Morton filters: fast, compressed sparse cuckoo filters

被引:0
|
作者
Alex D. Breslow
Nuwan S. Jayasena
机构
[1] AMD Research,Advanced Micro Devices, Inc.
来源
The VLDB Journal | 2020年 / 29卷
关键词
Morton filter; Cuckoo filter; Hardware cache and memory bandwidth optimized data structures and algorithms; Approximate set membership data structure; Approximate membership query data structure; Rank-and-select;
D O I
暂无
中图分类号
学科分类号
摘要
Approximate set membership data structures (ASMDSs) are ubiquitous in computing. They trade a tunable, often small, error rate (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}) for large space savings. The canonical ASMDS is the Bloom filter, which supports lookups and insertions but not deletions in its simplest form. Cuckoo filters (CFs), a recently proposed class of ASMDSs, add deletion support and often use fewer bits per item for equal ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}. This work introduces the Morton filter (MF), a novel CF variant that introduces several key improvements to its progenitor. Like CFs, MFs support lookups, insertions, and deletions, and when using an optional batching interface raise their respective throughputs by up to 2.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 20.8×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 1.3×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}. MFs achieve these improvements by (1) introducing a compressed block format that permits storing a logically sparse filter compactly in memory, (2) leveraging succinct embedded metadata to prune unnecessary memory accesses, and (3) more heavily biasing insertions to use a single hash function. With these optimizations, lookups, insertions, and deletions often only require accessing a single hardware cache line from the filter. MFs and CFs are then extended to support self-resizing, a feature of quotient filters (another ASMDS that uses fingerprints). MFs self-resize up to 13.9×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} faster than rank-and-select quotient filters (a state-of-the-art self-resizing filter). These improvements are not at a loss in space efficiency, as MFs typically use comparable to slightly less space than CFs for equal ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}.
引用
收藏
页码:731 / 754
页数:23
相关论文
共 50 条
  • [1] Morton filters: fast, compressed sparse cuckoo filters
    Breslow, Alex D.
    Jayasena, Nuwan S.
    VLDB JOURNAL, 2020, 29 (2-3): : 731 - 754
  • [2] Morton Filters: Faster, Space-Efficient Cuckoo Filters via Biasing, Compression, and Decoupled Logical Sparsity
    Breslow, Alex D.
    Jayasena, Nuwan S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (09): : 1041 - 1055
  • [3] Conditional Cuckoo Filters
    Ting, Daniel
    Cole, Rick
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 1838 - 1850
  • [4] Tagged Cuckoo Filters
    Huang, Kun
    Yang, Tong
    30TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2021), 2021,
  • [5] Adaptive Cuckoo Filters
    Mitzenmacher M.
    Pontarelli S.
    Reviriego P.
    ACM Journal of Experimental Algorithmics, 2020, 25
  • [6] Perfect Cuckoo Filters
    Reviriego, Pedro
    Pontarelli, Salvatore
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES, CONEXT 2021, 2021, : 205 - 211
  • [7] FAST CONVOLUTIONAL SPARSE CODING WITH SEPARABLE FILTERS
    Silva, Gustavo
    Quesada, Jorge
    Rodriguez, Paul
    Wohlberg, Brendt
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6035 - 6039
  • [8] Set Reconciliation with Cuckoo Filters
    Luo, Lailong
    Guo, Deke
    Rottenstreich, Ori
    Ma, Richard T. B.
    Luo, Xueshan
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2465 - 2468
  • [9] Fast Converging Cuckoo Search Algorithm to design symmetric FIR filters
    Das P.
    Naskar S.K.
    Narayan Patra S.
    International Journal of Computers and Applications, 2021, 43 (06) : 547 - 565
  • [10] Additive and Subtractive Cuckoo Filters
    Huang, Kun
    Yang, Tong
    2020 IEEE/ACM 28TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2020,