Parameterized Algorithms and Kernels for Rainbow Matching

被引:0
|
作者
Sushmita Gupta
Sanjukta Roy
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,The Institute of Mathematical Sciences
[2] HBNI,undefined
[3] Ben-Gurion University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Rainbow matching; Parameterized algorithm; Bounded search trees; Divide-and-conquer; 3-Set packing; 3-Dimensional matching;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the NP-complete colorful variant of the classical Matching problem, namely, the Rainbow Matching problem. Given an edge-colored graph G and a positive integer k, this problem asks whether there exists a matching of size at least k such that all the edges in the matching have distinct colors. We first develop a deterministic algorithm that solves Rainbow Matching on paths in time O⋆1+52k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}^\star \left( \left( \frac{1+\sqrt{5}}{2}\right) ^k\right) $$\end{document} and polynomial space. This algorithm is based on a curious combination of the method of bounded search trees and a “divide-and-conquer-like” approach, where the branching process is guided by the maintenance of an auxiliary bipartite graph where one side captures “divided-and-conquered” pieces of the path. Our second result is a randomized algorithm that solves Rainbow Matching on general graphs in time O⋆(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} ^\star (2^k)$$\end{document} and polynomial-space. Here, we show how a result by Björklund et al. (J Comput Syst Sci 87:119–139, 2017) can be invoked as a black box, wrapped by a probability-based analysis tailored to our problem. We also complement our two main results by designing kernels for Rainbow Matching on general and bounded-degree graphs.
引用
收藏
页码:1684 / 1698
页数:14
相关论文
共 50 条
  • [1] Parameterized Algorithms and Kernels for Rainbow Matching
    Gupta, Sushmita
    Roy, Sanjukta
    Saurabh, Saket
    Zehavi, Meirav
    ALGORITHMICA, 2019, 81 (04) : 1684 - 1698
  • [2] Parameterized algorithms and kernels for almost induced matching
    Xiao, Mingyu
    Kou, Shaowei
    THEORETICAL COMPUTER SCIENCE, 2020, 846 : 103 - 113
  • [3] Almost Induced Matching: Linear Kernels and Parameterized Algorithms
    Xiao, Mingyu
    Kou, Shaowei
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2016, 2016, 9941 : 220 - 232
  • [4] Sublinear algorithms for parameterized matching
    Salmela, Leena
    Tarhio, Jorma
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2006, 4009 : 354 - 364
  • [5] Improved parameterized algorithms and kernels for mixed domination
    Xiao, Mingyu
    Sheng, Zimo
    THEORETICAL COMPUTER SCIENCE, 2020, 815 (815) : 109 - 120
  • [6] A review on parameterized string matching algorithms
    Singh, Rama
    Rai, Deepak
    Prasad, Rajesh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (01):
  • [7] Parameterized pattern matching: Algorithms and applications
    Baker, BS
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1996, 52 (01) : 28 - 42
  • [8] Parameterized algorithms for weighted matching and packing problems
    Liu, Yunlong
    Chen, Jianer
    Wang, Jianxin
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2007, 4484 : 692 - +
  • [9] Parameterized algorithms for weighted matching and packing problems
    Wang, Jianxin
    Liu, Yunlong
    DISCRETE OPTIMIZATION, 2008, 5 (04) : 748 - 754
  • [10] Refined notions of parameterized enumeration kernels with applications to matching cut enumeration
    Golovach, Petr A.
    Komusiewicz, Christian
    Kratsch, Dieter
    Van Bang Le
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2022, 123 : 76 - 102