Harmonic Factorization and Reconstruction of the Elasticity Tensor

被引:0
|
作者
M. Olive
B. Kolev
B. Desmorat
R. Desmorat
机构
[1] LMT (ENS Cachan,CNRS, Centrale Marseille, I2M, UMR 7373
[2] CNRS,UMPC Univ. Paris 06, CNRS, UMR 7190, Institut d’Alembert
[3] UMR 8535,undefined
[4] Université Paris Saclay),undefined
[5] Aix Marseille Université,undefined
[6] Sorbonne Université,undefined
[7] Univ. Paris Sud 11,undefined
来源
Journal of Elasticity | 2018年 / 132卷
关键词
Anisotropy; Sylvester theorem; Harmonic factorization; Harmonic product; Tensorial reconstruction; Covariant tensors; 74E10; 15A72; 74B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study anisotropic Hooke’s tensor: we propose a factorization of its fourth-order harmonic part into second-order tensors. We obtain moreover explicit equivariant reconstruction formulas, using second-order covariants, for transverse isotropic and orthotropic fourth-order harmonic tensors, and for trigonal and tetragonal fourth-order harmonic tensors up to a cubic fourth order covariant remainder.
引用
收藏
页码:67 / 101
页数:34
相关论文
共 50 条
  • [21] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [22] A faster tensor robust PCA via tensor factorization
    An-Dong Wang
    Zhong Jin
    Jing-Yu Yang
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 2771 - 2791
  • [23] Realization of tensor product and of tensor factorization of rational functions
    Daniel Alpay
    Izchak Lewkowicz
    Quantum Studies: Mathematics and Foundations, 2019, 6 : 269 - 278
  • [24] A faster tensor robust PCA via tensor factorization
    Wang, An-Dong
    Jin, Zhong
    Yang, Jing-Yu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (12) : 2771 - 2791
  • [25] Realization of tensor product and of tensor factorization of rational functions
    Alpay, Daniel
    Lewkowicz, Izchak
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2019, 6 (03) : 269 - 278
  • [26] ELASTICITY OF FACTORIZATION IN NUMBER-FIELDS
    VALENZA, RJ
    JOURNAL OF NUMBER THEORY, 1990, 36 (02) : 212 - 218
  • [27] On the factorization of the elasticity system by dynamic programming
    Henry, J
    OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF PROFESSOR ALAIN BENSOUSSAN'S 60TH BIRTHDAY, 2001, : 346 - 352
  • [28] Spectral decomposition of the elasticity tensor
    Sutcliffe, S., 1600, (59):
  • [29] THE ESHELBY TENSOR IN NONLOCAL ELASTICITY AND IN NONLOCAL MICROPOLAR ELASTICITY
    Lazar, Markus
    Kirchner, Helmut O. K.
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2006, 1 (02) : 325 - 337
  • [30] An introduction to tensor elasticity II
    Truman, CE
    STRAIN, 2004, 40 (02) : 67 - 72