Size, morphology and optical properties of zirconia (ZrO2) nanostructures synthesized via the facile ionic surfactant-assisted solvothermal method

被引:0
|
作者
K. Anandan
K. Rajesh
V. Rajendran
机构
[1] AMET University,Department of Physics
[2] Presidency College (Autonomous),Department of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Zirconia (ZrO2) nanostructures, assisted by various ionic surfactants were successfully achieved via the facile ionic surfactants-assisted solvothermal method with the average crystallite size of 7.09–15.22 nm. The spherical, cauliflower-petal and needle-like nanostructures were confirmed by SEM studies and possible growth mechanisms of the nanostructures were proposed. The increasing trends of the band gap energy confirm the quantum confinement effect for the prepared samples. The strong UV emission in photoluminescence of the prepared samples indicates the high purity, perfect crystallinity and is good candidate material for optoelectronic devices.
引用
收藏
页码:13420 / 13425
页数:5
相关论文
共 50 条
  • [31] Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method
    Verma, Rajni
    Naik, Kusha Kumar
    Gangwar, Jitendra
    Srivastava, Avanish Kumar
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 148 (03) : 1064 - 1070
  • [32] Novel amorphous mesoporous 0.25Cr2O3-0.75ZrO2 nanomaterials synthesized by a surfactant-assisted hydrothermal method for ethanol oxidation
    Mahmoud, Hala R.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 687 : 954 - 963
  • [33] Effects of Precursor on the Morphology and Size of ZrO2 Nanoparticles, Synthesized by Sol-gel Method in Non-aqueous Medium
    Siddiqui, Mohammed Rafiq Hussain
    Al-Wassil, Abdulaziz Ibrahim
    Al-Otaibi, Abdullah Mohmmed
    Mahfouz, Refaat Mohamad
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2012, 15 (06): : 986 - 989
  • [34] Effect of Al doping on the structural and optical properties of ZrO2 nanopowders synthesized using solution combustion method
    Ravichandran, A. T.
    Pushpa, K. Catherine Siriya
    Ravichandran, K.
    Karthika, K.
    Nagabhushana, B. M.
    Mantha, Srinivas
    Swaminathan, K.
    SUPERLATTICES AND MICROSTRUCTURES, 2014, 75 : 533 - 542
  • [35] Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method
    Moloto, Nosipho
    Mpelane, Siyasanga
    Sikhwivhilu, Lucky M.
    Ray, Suprakas Sinha
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2012, 2012
  • [36] Synthesis of crystalline microporous SnO2 via a surfactant-assisted microwave heating method:: A general and rapid method for the synthesis of metal oxide nanostructures
    Xi, Guangcheng
    He, Yanting
    Zhang, Qing
    Xiao, Haiqing
    Wang, Xing
    Wang, Chao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (31): : 11645 - 11649
  • [37] TiO2-C nanocomposite synthesized via facile surfactant-assisted method as a part of less energy-consuming LED-based photocatalytic system for environmental applications
    Kubiak, Adam
    Grzegorska, Anna
    Gabala, Elzbieta
    Zembrzuska, Joanna
    Szybowicz, Miroslaw
    Fuks, Hubert
    Szymczyk, Anna
    Zielinska-Jurek, Anna
    Sikorski, Marek
    Jesionowski, Teofil
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2023, 437
  • [38] Surfactant-assisted incorporation of ZrO2 nanoparticles in quaternized poly(2,6-dimethyl-1,4-phenylene oxide) for superior properties of anion exchange membranes
    Yang, Yunfei
    Ye, Niya
    Chen, Shaoshuai
    Zhang, Dengji
    Wan, Ruiying
    Peng, Xiaomeng
    He, Ronghuan
    RENEWABLE ENERGY, 2020, 166 : 45 - 55
  • [39] Sheet, spherical and plate-like chromium sesquioxide (Cr2O3) nanostructures synthesized via ionic surfactants assisted facile precipitation method
    Anandan, K.
    Rajendran, V.
    MATERIALS LETTERS, 2015, 146 : 99 - 102
  • [40] Structural, optical and electrical properties of copper composite ZrO2 nanoparticles prepared via sol–gel method
    N. Mahendran
    S. Johnson Jeyakumar
    M. Ponnar
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 23399 - 23411