Coadjoint Poisson Actions of Poisson-Lie Groups

被引:0
|
作者
Boris A. Kupershmidt
Ognyan S. Stoyanov
机构
[1] University of Tennessee Space Institute,Department of Mathematics
[2] Rutgers University,Department of Mathematics
来源
Journal of Nonlinear Mathematical Physics | 1999年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A Poisson-Lie group acting by the coadjoint action on the dual of its Lie algebra induces on it a non-trivial class of quadratic Poisson structures extending the linear Poisson bracket on the coadjoint orbits.
引用
收藏
页码:344 / 354
页数:10
相关论文
共 50 条
  • [41] Poisson-Lie T-plurality
    von Unge, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (07):
  • [42] On Deformation Quantization of Poisson-Lie Groups and Moduli Spaces of Flat Connections
    Li-Bland, David
    Severa, Pavol
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6734 - 6751
  • [43] Unimodularity and invariant volume forms for Hamiltonian dynamics on Poisson-Lie groups
    Gutierrez-Sagredo, I
    Iglesias Ponte, D.
    Marrero, J. C.
    Padron, E.
    Ravanpak, Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (01)
  • [44] Integrable deformations of Rossler and Lorenz systems from Poisson-Lie groups
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) : 8207 - 8228
  • [45] Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Ballesteros, Angel
    Marrero, Juan C.
    Ravanpak, Zohreh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (14)
  • [46] Poisson-Lie T-duality and loop groups of Drinfeld doubles
    Klimcik, C
    Severa, P
    PHYSICS LETTERS B, 1996, 372 (1-2) : 65 - 71
  • [47] Lotka-Volterra systems as Poisson-Lie dynamics on solvable groups
    Ballesteros, A.
    Blasco, A.
    Musso, F.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 115 - 119
  • [48] On Poisson actions of compact Lie groups on symplectic manifolds
    Alekseev, AY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 241 - 256
  • [49] A convexity theorem for Poisson actions of compact Lie groups
    Flaschka, H
    Ratiu, T
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1996, 29 (06): : 787 - 809
  • [50] Comparison of Poisson structures and Poisson-Lie dynamical r-matrices
    Enriquez, B
    Etingof, P
    Marshall, I
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (36) : 2183 - 2198