Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension

被引:0
|
作者
Fernando Galaz-Garcia
Martin Kerin
机构
[1] Mathematisches Institut,
来源
Mathematische Zeitschrift | 2014年 / 276卷
关键词
Non-negative curvature; Circle action; Torus action; 4-manifolds; 5-manifolds; Symmetry rank; 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mn,n∈{4,5,6}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{M }^n,\, n \in \{4,5,6\}$$\end{document}, be a compact, simply connected n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-manifold which admits some Riemannian metric with non-negative curvature and an isometry group of maximal possible rank. Then any smooth, effective action on Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{M }^n$$\end{document} by a torus Tn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{T }^{n-2}$$\end{document} is equivariantly diffeomorphic to an isometric action on a normal biquotient. Furthermore, it follows that any effective, isometric circle action on a compact, simply connected, non-negatively curved four-dimensional manifold is equivariantly diffeomorphic to an effective, isometric action on a normal biquotient.
引用
收藏
页码:133 / 152
页数:19
相关论文
共 50 条
  • [31] Positively curved manifolds with low fixed point cohomogeneity
    Grove, K
    Kim, CW
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 67 (01) : 1 - 33
  • [32] On the topology of moduli spaces of non-negatively curved Riemannian metrics
    Tuschmann, Wilderich
    Wiemeler, Michael
    MATHEMATISCHE ANNALEN, 2022, 384 (3-4) : 1629 - 1651
  • [33] On fundamental groups of positively curved manifolds with torus actions
    Rong, Xiaochun
    ASIAN JOURNAL OF MATHEMATICS, 2005, 9 (04) : 545 - 559
  • [34] MIXING TIME AND EXPANSION OF NON-NEGATIVELY CURVED MARKOV CHAINS
    Muench, Florentin
    Salez, Justin
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2023, 10 : 575 - 590
  • [35] The First Width of Non-negatively Curved Surfaces with Convex Boundary
    Donato, Sidney
    Montezuma, Rafael
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (02)
  • [36] The rigidity of sharp spectral gap in non-negatively curved spaces
    Ketterer, Christian
    Kitabeppu, Yu
    Lakzian, Sajjad
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 228
  • [37] Rigidity of flat sections on non-negatively curved pullback submersions
    Duran, C.
    Speranca, L. D.
    MANUSCRIPTA MATHEMATICA, 2015, 147 (3-4) : 511 - 525
  • [38] Rigidity of flat sections on non-negatively curved pullback submersions
    C. Durán
    L. D. Sperança
    Manuscripta Mathematica, 2015, 147 : 511 - 525
  • [39] The First Width of Non-negatively Curved Surfaces with Convex Boundary
    Sidney Donato
    Rafael Montezuma
    The Journal of Geometric Analysis, 2024, 34
  • [40] Hausdorff dimension of diophantine geodesics in negatively curved manifolds
    Hersonsky, S
    Paulin, F
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 539 : 29 - 43