Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension

被引:0
|
作者
Fernando Galaz-Garcia
Martin Kerin
机构
[1] Mathematisches Institut,
来源
Mathematische Zeitschrift | 2014年 / 276卷
关键词
Non-negative curvature; Circle action; Torus action; 4-manifolds; 5-manifolds; Symmetry rank; 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mn,n∈{4,5,6}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{M }^n,\, n \in \{4,5,6\}$$\end{document}, be a compact, simply connected n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-manifold which admits some Riemannian metric with non-negative curvature and an isometry group of maximal possible rank. Then any smooth, effective action on Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{M }^n$$\end{document} by a torus Tn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{T }^{n-2}$$\end{document} is equivariantly diffeomorphic to an isometric action on a normal biquotient. Furthermore, it follows that any effective, isometric circle action on a compact, simply connected, non-negatively curved four-dimensional manifold is equivariantly diffeomorphic to an effective, isometric action on a normal biquotient.
引用
收藏
页码:133 / 152
页数:19
相关论文
共 50 条