Validity and reliability of three commercially available breath-by-breath respiratory systems

被引:0
|
作者
James Carter
Asker E. Jeukendrup
机构
[1] Human Performance Laboratory,
[2] School of Sport and Exercise Sciences,undefined
[3] The University of Birmingham,undefined
[4] Edgbaston,undefined
[5] B15 2TT,undefined
[6] Birmingham,undefined
[7] UK,undefined
来源
关键词
Gas exchange Exercise testing Reproducibility Breath-by-breath measurements On-line systems;
D O I
暂无
中图分类号
学科分类号
摘要
Information concerning the validity and reliability of commercial on-line gas analysis systems is limited. The aim of this study was to provide a comparison of the validity and reliability of three on-line systems (Oxycon Alpha, Oxycon Pro and Pulmolab EX670) with that of Douglas bags. Two separate studies were conducted. In study 1, the three gas analysis systems were compared with Douglas bags using a metabolic simulator over four increases in ventilation. In study 2, ten subjects were split into equal groups exercising at 100 W or 150 W for 85 min on three separate occasions. Each system was used twice per visit. Study 1 demonstrated that the Oxycon Alpha and Douglas bags produced similar respiratory values over all levels of ventilation. The Oxycon Pro tended to slightly overestimate mean expiratory flow (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V_{\rm E} $\end{document} ), oxygen uptake (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm O}_{\rm 2} $\end{document} ), carbon dioxide production (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm CO}_{\rm 2} $\end{document} ) and respiratory exchange ratio (RER) at the higher ventilations. The Pulmolab produced large overestimations at all ventilations for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm CO}_{\rm 2} $\end{document} and RER (up to 26.3% away from expectations), whilst values for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V_{\rm E} $\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm O}_{\rm 2} $\end{document} were slightly underestimated at higher ventilations (up to 7.5% from expectations). The results of study 2 support the findings of study 1, with the Oxycon Pro and Oxycon Alpha producing similar results compared to Douglas bags for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm O}_{\rm 2} $\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm CO}_{\rm 2} $\end{document} and RER. The coefficients of variation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm O}_{\rm 2} $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot V{\rm CO}_{\rm 2} $\end{document} measured using Douglas bags, Oxycon Pro and Oxycon Alpha were 3.3–5.1%, 4.7–7.0% and 4.5–6.3%, respectively, whilst that for the Pulmolab was highly variable (26.8–45.8%). The exercise study showed the Oxycon Pro and Oxycon Alpha to be both valid and reliable on-line systems for the measurement of parameters of respiration, at least at workloads up to 150 W.
引用
收藏
页码:435 / 441
页数:6
相关论文
共 50 条
  • [11] COMPUTERIZED BREATH-BY-BREATH ANALYSIS OF RESPIRATORY VARIABLES DURING EXERCISE
    SALMINEN, R
    AUNOLA, S
    MALKIA, E
    VUORI, I
    MEDICAL PROGRESS THROUGH TECHNOLOGY, 1982, 9 (01) : 27 - 32
  • [12] VALIDATION OF A VOLUMELESS BREATH-BY-BREATH METHOD FOR MEASUREMENT OF RESPIRATORY QUOTIENT
    HOFFMAN, GM
    TORRES, A
    FORSTER, HV
    JOURNAL OF APPLIED PHYSIOLOGY, 1993, 75 (04) : 1903 - 1910
  • [13] RESPIRATORY PHASE DETECTION AND DELAY DETERMINATION FOR BREATH-BY-BREATH ANALYSIS
    BOUTELLIER, U
    KUNDIG, T
    GOMEZ, U
    PIETSCH, P
    KOLLER, EA
    JOURNAL OF APPLIED PHYSIOLOGY, 1987, 62 (02) : 837 - 843
  • [14] On the inaccuracy of breath-by-breath metabolic gas exchange systems
    Huszczuk, Andrew
    Haouzi, Philippe
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2016, 233 : 14 - 16
  • [15] BREATH-BY-BREATH MONITORING OF RESPIRATORY GAS CONCENTRATIONS DURING COMPRESSION AND DECOMPRESSION
    RICHARD, RB
    LOOMIS, JL
    RUSSELL, GB
    SNIDER, MT
    UNDERSEA BIOMEDICAL RESEARCH, 1991, 18 (02): : 117 - 126
  • [16] BREATH-BY-BREATH RESPIRATORY TIMING AND VOLUME CONTROL DURING PERIODIC BREATHING
    CARLEY, DW
    MAAYAN, C
    GRIMES, J
    SHANNON, DC
    AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (03): : R653 - R660
  • [17] Respiratory snorkel and valve system for breath-by-breath gas analysis in swimming
    Keskinen, KL
    Rodríguez, FA
    Keskinen, OP
    SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 2003, 13 (05) : 322 - 329
  • [18] Breath-by-Breath Respiratory Exchange Ratio Variability Increases With Marathon Training
    Brown, Scott R.
    Biltz, George R.
    Rhodes, Greg S.
    Lundstrom, Chris J.
    Ingraham, Stacy J.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2013, 45 (05): : 161 - 161
  • [19] Assessment of breath-by-breath alveolar gas exchange: an alternative view of the respiratory cycle
    Cettolo, V.
    Francescato, Maria Pia
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2015, 115 (09) : 1897 - 1904
  • [20] Assessment of breath-by-breath alveolar gas exchange: an alternative view of the respiratory cycle
    V. Cettolo
    Maria Pia Francescato
    European Journal of Applied Physiology, 2015, 115 : 1897 - 1904