Positively Graded Rings which are Unique Factorization Rings

被引:0
|
作者
Iwan Ernanto
Hidetoshi Marubayashi
Akira Ueda
Sri Wahyuni
机构
[1] Universitas Gadjah Mada,Department of Mathematics, Faculty of Mathematics and Natural Sciences
[2] Naruto University of Education,Department of Mathematics
[3] Shimane University,Department of Mathematical Sciences, Interdisciplinary Faculty of Science and Engineering
来源
关键词
Strongly graded ring; Maximal order; Prime Goldie ring; Unique factorization ring; 13A15; 13A18; 13G05; 13E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R=⊕n∈ℤ0Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R = \oplus _{n \in \mathbb {Z}_{0}} R_{n}$\end{document} be a positively graded ring which is a sub-ring of the strongly graded ring S=⊕n∈ℤRn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S = \oplus _{n \in \mathbb {Z}} R_{n}$\end{document}, where R0 is a Noetherian prime ring. It is shown that R is a unique factorization ring in the sense of (Commun. Algebra 19, 167–198, 1991) if and only if R0 is a ℤ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{0}$\end{document}-invariant unique factorization ring and R1 is a principal (R0,R0) bi-module. We give examples of ℤ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}_{0}$\end{document}-invariant unique factorization rings which are not unique factorization rings.
引用
收藏
页码:1037 / 1041
页数:4
相关论文
共 50 条