Consistent estimates of the dynamic figure parameters of the earth

被引:0
|
作者
Wei Chen
Jian Cheng Li
Jim Ray
Wen Bin Shen
Cheng Li Huang
机构
[1] Wuhan University,Key Laboratory of Geospace Environment and Geodesy, School of Geodesy and Geomatics
[2] National Oceanic and Atmospheric Administration (retired),Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory
[3] Chinese Academy of Science,undefined
来源
Journal of Geodesy | 2015年 / 89卷
关键词
Earth’s mass; Principal moments of inertia; Dynamic ellipticity;
D O I
暂无
中图分类号
学科分类号
摘要
The Earth’s dynamic figure parameters, namely the principal moments of inertia and dynamic ellipticities of the whole Earth, the fluid outer core and the solid inner core, are fundamental parameters for geodetic, geophysical and astronomical studies. This study aims to re-estimate the mass and the dynamic figure parameters of the Earth on the basis of some global gravity models (EGM2008, EIGEN-6C and EIGEN-6C2) recently released with unprecedented accuracies, as well as an improved value of the gravitational constant G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} recommended by the Committee on Data for Science and Technology (CODATA). With the potential coefficients of EGM2008, EIGEN-6C and EIGEN-6C2 rescaled to be consistent with the IAU (International Astronomical Union) and IAG (International Association of Geodesy) numerical standards, and other values of relevant parameters also being consistent with those numerical standards, we have obtained consistent estimates of the dynamic figure parameters of the stratified Earth using the theory described in Chen and Shen (J Geophys Res 115:B12419 2010). Our preferred principal moments of inertia for the whole Earth are A=(80,085.1±9.6)×1033kgm2,B=(80,086.8±9.6)×1033kgm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A = (80{,}085.1\pm 9.6)\times 10^{33}~\hbox {kg}~\hbox {m}^{2}, B = (80{,}086.8\pm 9.6) \times 10^{33}~ \hbox {kg} ~\hbox {m}^{2}$$\end{document}, and C=(80,349.0±9.6)×1033kgm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C = (80{,}349.0 \pm 9.6) \times 10^{33}~\hbox {kg} ~\hbox {m}^{2}$$\end{document}, respectively, the accuracies being limited by the uncertainties of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} and e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e$$\end{document} (dynamic ellipticity of the whole Earth).
引用
收藏
页码:179 / 188
页数:9
相关论文
共 50 条
  • [21] Size and Figure of the Earth
    Dominian, Leon
    BULLETIN OF THE AMERICAN GEOGRAPHICAL SOCIETY OF NEW YORK, 1913, 45 (03): : 217 - 217
  • [22] Airy and the figure of the earth
    Knott, CG
    NATURE, 1919, 102 : 384 - 384
  • [23] Figure of the Earth(Summary)
    J.T.FANG.
    地理学报, 1935, (01) : 179 - 181
  • [24] On the figure of the earth.
    Prescott, J.
    PHILOSOPHICAL MAGAZINE, 1907, 14 (79-84) : 482 - 493
  • [25] Airy and the figure of the earth
    Bianco, OZ
    NATURE, 1919, 102 : 384 - 384
  • [26] Combination strategy for consistent final, rapid and predicted Earth rotation parameters
    Kehm, Alexander
    Hellmers, Hendrik
    Blossfeld, Mathis
    Dill, Robert
    Angermann, Detlef
    Seitz, Florian
    Hugentobler, Urs
    Dobslaw, Henryk
    Thomas, Maik
    Thaller, Daniela
    Bohm, Johannes
    Schonemann, Erik
    Mayer, Volker
    Springer, Tim
    Otten, Michiel
    Bruni, Sara
    Enderle, Werner
    JOURNAL OF GEODESY, 2023, 97 (01)
  • [27] Combination strategy for consistent final, rapid and predicted Earth rotation parameters
    Alexander Kehm
    Hendrik Hellmers
    Mathis Bloßfeld
    Robert Dill
    Detlef Angermann
    Florian Seitz
    Urs Hugentobler
    Henryk Dobslaw
    Maik Thomas
    Daniela Thaller
    Johannes Böhm
    Erik Schönemann
    Volker Mayer
    Tim Springer
    Michiel Otten
    Sara Bruni
    Werner Enderle
    Journal of Geodesy, 2023, 97
  • [28] EFFICIENT METHOD TO COMPUTE CONSISTENT ESTIMATES OF THE AR PARAMETERS OF AN ARMA MODEL.
    Li, Shiping
    Dickinson, Bradley W.
    IEEE Transactions on Automatic Control, 1986, AC-31 (03) : 275 - 278
  • [29] MINIMAX RECURRENT ESTIMATES OF DYNAMIC-SYSTEMS PARAMETERS
    KIRICHENKO, NF
    NAKONECHNYJ, AG
    NAVRODSKIJ, VA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (11): : 1021 - 1025
  • [30] Consistent Optical and Electrical Noise Figure
    Noe, Reinhold
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (01) : 137 - 148