On partial stability theory of nonlinear dynamic systems

被引:0
|
作者
V. I. Vorotnikov
Yu. G. Martyshenko
机构
[1] Ural State Technical University,Nizhnii Tagil Technological Institute
关键词
Stationary System; Lyapunov Function; Asymptotic Stability; Equilibrium Position; Stability Problem;
D O I
暂无
中图分类号
学科分类号
摘要
A stability problem with respect to a part of variables of the zero equilibrium position is considered for nonlinear non-stationary systems of ordinary differential equations with the continuous right-hand side. As compared to known assumptions, more general assumptions are made on the initial values of variables non-controlled in the course of studying stability. In addition, a stability problem is considered with respect to a part of variables of the “partial” equilibrium position, with similar assumptions made for initial values of variables that do not define the given equilibrium position. Conditions of stability and asymptotic stability of this type are obtained within the method of Lyapunov functions and generalize a number of existing results. The results are applied to the stability problem with respect to a part of variables of equilibrium positions of nonlinear holonomic mechanical systems. The problem of unification (to a certain extent) of the process of studying partial stability problems of stationary and non-stationary systems is discussed.
引用
收藏
页码:702 / 709
页数:7
相关论文
共 50 条