Right-angled Artin groups and curve graphs of nonorientable surfaces

被引:0
|
作者
Takuya Katayama
Erika Kuno
机构
[1] Gakushuin University,Department of Mathematics, Faculty of Science
[2] Osaka University,Department of Mathematics, Graduate School of Science
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Right-angled Artin groups; Curve graphs; Mapping class groups; Nonorientable surfaces; Two-sided curves; 20F36; 20F65; 20F67; 57K20;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a closed nonorientable surface with or without marked points. In this paper we prove that, for every finite full subgraph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document}, the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N. Here, Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} is the subgraph, induced by essential two-sided simple closed curves in N, of the ordinary curve graph C(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}(N)$$\end{document}. In addition, we show that there exists a finite graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} which is not a full subgraph of Ctwo(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{\textrm{two}}(N)$$\end{document} for some N, but the right-angled Artin group on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} can be embedded in the mapping class group of N.
引用
收藏
相关论文
共 50 条
  • [21] Divergence and quasimorphisms of right-angled Artin groups
    Jason Behrstock
    Ruth Charney
    Mathematische Annalen, 2012, 352 : 339 - 356
  • [22] Algebraic invariants for right-angled Artin groups
    Stefan Papadima
    Alexander I. Suciu
    Mathematische Annalen, 2006, 334 : 533 - 555
  • [23] Zassenhaus filtrations and right-angled Artin groups
    Tra, Nguyen Thi
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [24] Abelian splittings of right-angled Artin groups
    Groves, Daniel
    Hull, Michael
    HYPERBOLIC GEOMETRY AND GEOMETRIC GROUP THEORY, 2017, 73 : 159 - 165
  • [25] On the profinite topology of right-angled Artin groups
    Metaftsis, V.
    Raptis, E.
    JOURNAL OF ALGEBRA, 2008, 320 (03) : 1174 - 1181
  • [26] GRAPH BRAID GROUPS AND RIGHT-ANGLED ARTIN GROUPS
    Kim, Jee Hyoun
    Ko, Ki Hyoung
    Park, Hy Won
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 309 - 360
  • [27] Surface subgroups of right-angled Artin groups
    Crisp, John
    Sageev, Michah
    Sapir, Mark
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (03) : 443 - 491
  • [28] Liftable automorphisms of right-angled Artin groups
    Oh, Sangrok
    Seo, Donggyun
    Tranchida, Philippe
    JOURNAL OF GROUP THEORY, 2024,
  • [29] Embedability between right-angled Artin groups
    Kim, Sang-Hyun
    Koberda, Thomas
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 493 - 530
  • [30] Palindromic automorphisms of right-angled Artin groups
    Fullarton, Neil J.
    Thomas, Anne
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (03) : 865 - 887