Prediction of pathologic complete response to neoadjuvant chemotherapy using machine learning models in patients with breast cancer

被引:0
|
作者
Ji-Yeon Kim
Eunjoo Jeon
Soonhwan Kwon
Hyungsik Jung
Sunghoon Joo
Youngmin Park
Se Kyung Lee
Jeong Eon Lee
Seok Jin Nam
Eun Yoon Cho
Yeon Hee Park
Jin Seok Ahn
Young-Hyuck Im
机构
[1] Samsung Medical Center,Division of Hematology
[2] Sungkyunkwan University School of Medicine,Oncology, Department of Internal Medicine
[3] Department of Surgery,Department of Pathology, Samsung Medical Center
[4] Samsung Medical Center,undefined
[5] Sungkyunkwan University School of Medicine,undefined
[6] Sungkyunkwan University School of Medicine,undefined
[7] Digital Health Business Team,undefined
[8] Samsung SDS,undefined
来源
关键词
Breast cancer; Neoadjuvant chemotherapy; Machine learning; Pathologic complete response;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:747 / 757
页数:10
相关论文
共 50 条
  • [21] The Assessment of Breast Cancer Response and the Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy; Comparison of MRI and PET
    Kim, S.
    Moon, W.
    Kang, J.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (05)
  • [22] Predictors of recurrence in breast cancer patients with a pathologic complete response after neoadjuvant chemotherapy
    M Tanioka
    C Shimizu
    K Yonemori
    K Yoshimura
    K Tamura
    T Kouno
    M Ando
    N Katsumata
    H Tsuda
    T Kinoshita
    Y Fujiwara
    British Journal of Cancer, 2010, 103 : 297 - 302
  • [23] A priori prediction of tumour response to neoadjuvant chemotherapy in breast cancer patients using quantitative CT and machine learning
    Hadi Moghadas-Dastjerdi
    Hira Rahman Sha-E-Tallat
    Lakshmanan Sannachi
    Ali Sadeghi-Naini
    Gregory J. Czarnota
    Scientific Reports, 10
  • [24] Predictors of recurrence in breast cancer patients with a pathologic complete response after neoadjuvant chemotherapy
    Tanioka, M.
    Shimizu, C.
    Yonemori, K.
    Yoshimura, K.
    Tamura, K.
    Kouno, T.
    Ando, M.
    Katsumata, N.
    Tsuda, H.
    Kinoshita, T.
    Fujiwara, Y.
    BRITISH JOURNAL OF CANCER, 2010, 103 (03) : 297 - 302
  • [25] A priori prediction of tumour response to neoadjuvant chemotherapy in breast cancer patients using quantitative CT and machine learning
    Moghadas-Dastjerdi, Hadi
    Sha-E-Tallat, Hira Rahman
    Sannachi, Lakshmanan
    Sadeghi-Naini, Ali
    Czarnota, Gregory J.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [26] Biomarkers Predicting Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
    Li, Xiaoxian Bill
    Krishnamurti, Uma
    Bhattarai, Shristi
    Ktimov, Sergey
    Reid, Michelle D.
    O'Regan, Ruth
    Aneja, Ritu
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2016, 145 (06) : 871 - 878
  • [27] Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients
    Baumgartner, Annina
    Tausch, Christoph
    Hosch, Stefanie
    Papassotiropoulos, Barbel
    Varga, Zsuzsanna
    Rageth, Christoph
    Baege, Astrid
    BREAST, 2018, 39 : 19 - 23
  • [28] Nomogram-derived prediction of pathologic complete response (pCR) in breast cancer patients treated with neoadjuvant chemotherapy (NCT)
    Pu, Shengyu
    Wang, Ke
    Liu, Yang
    Liao, Xiaoqin
    Chen, Heyan
    He, Jianjun
    Zhang, Jian
    BMC CANCER, 2020, 20 (01)
  • [29] Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method
    Qu, Yu-Hong
    Zhu, Hai-Tao
    Cao, Kun
    Li, Xiao-Ting
    Ye, Meng
    Sun, Ying-Shi
    THORACIC CANCER, 2020, 11 (03) : 651 - 658
  • [30] Nomogram-derived prediction of pathologic complete response (pCR) in breast cancer patients treated with neoadjuvant chemotherapy (NCT)
    Shengyu Pu
    Ke Wang
    Yang Liu
    Xiaoqin Liao
    Heyan Chen
    Jianjun He
    Jian Zhang
    BMC Cancer, 20