Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis)

被引:0
|
作者
Pengjie Wang
Chuan Yue
Di Chen
Yucheng Zheng
Qian Zhang
Jiangfan Yang
Naixing Ye
机构
[1] Fujian Agriculture and Forestry University,College of Horticulture, Key Laboratory of Tea Science
来源
Genes & Genomics | 2019年 / 41卷
关键词
Abiotic stresses; Expression profiles;
D O I
暂无
中图分类号
学科分类号
摘要
The WRKY transcription factors (TFs) family is one of the largest TF families in plants and plays a central role in diverse regulation and multiple stress responses. However, the systematical analysis of the WRKY gene family in tea plant (Camellia sinensis) based on genomic data has been lacking. The primary objective of this study was to set a systematic analysis of the WRKY gene family based on genomic data in tea plant and analyze their expression profiles under various abiotic stresses. We searched the tea plant genome using the consensus model of the WRKY domain (PF03106) and then used these search results to identify all the WRKY family members by SMART and the CDD program. Analyze their phylogeny, classification, structure, conserved motifs, Cis-elements, interactors and expression profiles. 56 putative WRKY genes were identified from the tea plant genome and divided into three main groups (I–III) and five subgroups (IIa–IIe) according to the WRKY domains and the zinc-finger structure. The gene structure and conserved motifs of the CsWRKY genes were also characterized and were consistent with the classification results. Annotation analysis showed that 34 CsWRKY genes may be involved in stress responses. Promoter analysis implied that CsWRKY genes, except for CsWRKY55, possessed at least one abiotic stress response cis-element. Expression profiles of CsWRKY genes in different tissues were analyzed with RNA-seq data. The results showed that 56 CsWRKY genes had differential expression in their transcript abundance. The expression profiles also showed that many identified CsWRKY genes were possibly involved in the response to cold, drought, salt, or ABA treatment. Tea plant genome contains at least 56 WRKY genes. These results provide useful information for further exploring the function and regulatory mechanism of CsWRKY genes in the growth, development, and adaption to abiotic stresses in tea plant.
引用
下载
收藏
页码:17 / 33
页数:16
相关论文
共 50 条
  • [31] Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses
    Jiang, Yuanzhong
    Duan, Yanjiao
    Yin, Jia
    Ye, Shenglong
    Zhu, Jingru
    Zhang, Faqi
    Lu, Wanxiang
    Fan, Di
    Luo, Keming
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (22) : 6629 - 6644
  • [32] Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses
    Hu, Wenjing
    Ren, Qiaoyu
    Chen, Yali
    Xu, Guoliang
    Qian, Yexiong
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [33] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Yiqing Wang
    Tao Wang
    Siyu Qi
    Jiamin Zhao
    Jiumei Kong
    Zhihui Xue
    Weijiang Sun
    Wen Zeng
    BMC Genomics, 25
  • [34] Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses
    Wenjing Hu
    Qiaoyu Ren
    Yali Chen
    Guoliang Xu
    Yexiong Qian
    BMC Plant Biology, 21
  • [35] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Wang, Yiqing
    Wang, Tao
    Qi, Siyu
    Zhao, Jiamin
    Kong, Jiumei
    Xue, Zhihui
    Sun, Weijiang
    Zeng, Wen
    BMC GENOMICS, 2024, 25 (01)
  • [36] Genome-wide analysis of the P450 gene family in tea plant (Camellia sinensis) reveals functional diversity in abiotic stress
    Chuan Shen
    Xia Li
    BMC Genomics, 24
  • [37] Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis
    Xiao, Yong
    Zhou, Lixia
    Lei, Xintao
    Cao, Hongxing
    Wang, Yong
    Dou, Yajing
    Tang, Wenqi
    Xia, Wei
    PLOS ONE, 2017, 12 (12):
  • [38] Genome-wide analysis of the P450 gene family in tea plant (Camellia sinensis) reveals functional diversity in abiotic stress
    Shen, Chuan
    Li, Xia
    BMC GENOMICS, 2023, 24 (01)
  • [39] Genome-wide identification and characterization of the lettuce GASA family in response to abiotic stresses
    Sun Ho Lee
    Jin Seok Yoon
    Woo Joo Jung
    Dae Yeon Kim
    Yong Weon Seo
    BMC Plant Biology, 23
  • [40] Genome-wide identification and characterization of the lettuce GASA family in response to abiotic stresses
    Lee, Sun Ho
    Yoon, Jin Seok
    Jung, Woo Joo
    Kim, Dae Yeon
    Seo, Yong Weon
    BMC PLANT BIOLOGY, 2023, 23 (01)