Spot estimation for fractional Ornstein–Uhlenbeck stochastic volatility model: consistency and central limit theorem

被引:0
|
作者
Yaroslav Eumenius-Schulz
机构
[1] LPSM-UPMC,
关键词
Rough volatility; Fractional stochastic volatility; Spot volatility estimator; Central limit theorem; 60; 62;
D O I
暂无
中图分类号
学科分类号
摘要
There has been an increasing interest for rough stochastic volatility models. However, little is known about the statistical inference for such models, especially for high frequency data. This paper investigates estimation of the fractional spot volatility from discrete observations of the price process on a grid with a time interval Δn→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n\rightarrow 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. Namely, the model with fractional Ornstein–Uhlenbeck log-volatility and Itô-semimartingale log-price processes is considered. In this setup both consistency and central limit theorem are proven for truncated and non-truncated spot volatility estimators. Then, asymptotic confidence intervals are derived for a finite number of spot volatility estimators at different estimation times. Consequently, the highest possible rate of convergence achieved in the central limit theorem ΔnH/(2H+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n^{H/(2H+1)}$$\end{document} is a function of the Hurst parameter H of the fractional Brownian motion driving the volatility. This rate coincides with the already known highest convergence rate for the Brownian case when H=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=0.5$$\end{document}. Furthermore, simulations in this paper validate the consistency and central limit theorem numerically. Article class.
引用
收藏
页码:355 / 380
页数:25
相关论文
共 50 条
  • [31] Stable Central Limit Theorems for Super Ornstein–Uhlenbeck Processes, Ⅱ
    Yan Xia REN
    Ren Ming SONG
    Zhen Yao SUN
    Jian Jie ZHAO
    ActaMathematicaSinica,EnglishSeries, 2022, (03) : 487 - 498
  • [32] Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
    Yan-Xia Ren
    Renming Song
    Rui Zhang
    Acta Applicandae Mathematicae, 2014, 130 : 9 - 49
  • [33] Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 9 - 49
  • [34] Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process
    Liang Shen
    Qingsong Xu
    Advances in Difference Equations, 2014
  • [35] Volatility Estimation of Gaussian Ornstein-Uhlenbeck Processes of the Second Kind
    Belfadli, Rachid
    Es-Sebaiy, Khalifa
    Farah, Fatima-Ezzahra
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 860 - 876
  • [36] Comparative Estimation for Discrete Fractional Ornstein-Uhlenbeck Process
    Rifo, Laura
    Torres, Soledad
    Tudor, Ciprian A.
    STOCHASTIC MODELS, 2013, 29 (03) : 291 - 305
  • [37] A Central Limit Theorem for the stochastic wave equation with fractional noise
    Delgado-Vences, Francisco
    Nualart, David
    Zheng, Guangqu
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 3020 - 3042
  • [38] Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process
    Shen, Liang
    Xu, Qingsong
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [39] Pricing Variance Swaps Under Stochastic Volatility with an Ornstein-Uhlenbeck Process
    JIA Zhaoli
    BI Xiuchun
    ZHANG Shuguang
    Journal of Systems Science & Complexity, 2015, 28 (06) : 1412 - 1425
  • [40] Pricing variance swaps under stochastic volatility with an Ornstein-Uhlenbeck process
    Jia Zhaoli
    Bi Xiuchun
    Zhang Shuguang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2015, 28 (06) : 1412 - 1425