Pointed Gromov-Hausdorff Topological Stability for Non-compact Metric Spaces

被引:0
|
作者
Luis Eduardo Osorio Acevedo
Henry Mauricio Sánchez
机构
[1] Universidad Tecnológica de Pereira,Departamento de Matemáticas
[2] Universidad Central,FICB
关键词
Pointed Gromov-Hausdorff metric; Pointed ; -Gromov-Hausdorff distance; Locally topological stability; -expansive; -shadowing property; Primary 37Bxx; 37Dxx; Secondary 53C23;
D O I
暂无
中图分类号
学科分类号
摘要
We combine the pointed Gromov-Hausdorff metric with the locally C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}-distance to obtain the pointed C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}-Gromov-Hausdorff distance between maps of possibly different non-compact pointed metric spaces. The latter is combined with Walters’s locally topological stability proposed by Lee–Nguyen–Yang, and GH-stability from Arbieto-Morales to obtain the notion of topologically GH-stable pointed homeomorphism. We give one example to show the difference between the distance when taking different base points in a pointed metric space.
引用
下载
收藏
相关论文
共 50 条