Unification and Projectivity in De Morgan and Kleene Algebras

被引:0
|
作者
Simone Bova
Leonardo Cabrer
机构
[1] Technische Universität Wien,Institut für Informationssysteme
[2] University of Bern,Mathematics Institute
来源
Order | 2014年 / 31卷
关键词
Distributive lattices; De Morgan and Kleene algebras; Unification; Projectivity;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a complete classification of solvable instances of the equational unification problem over De Morgan and Kleene algebras with respect to unification type. The key tool is a combinatorial characterization of finitely generated projective De Morgan and Kleene algebras.
引用
收藏
页码:159 / 187
页数:28
相关论文
共 50 条
  • [41] Algebraic models of deviant modal operators based on de Morgan and Kleene lattices
    Cattaneo, G.
    Ciucci, D.
    Dubois, D.
    INFORMATION SCIENCES, 2011, 181 (19) : 4075 - 4100
  • [42] Implicational classes of De Morgan Boolean algebras
    Pynko, AP
    DISCRETE MATHEMATICS, 2001, 232 (1-3) : 59 - 66
  • [43] Discrete duality for De Morgan Algebras with operators
    Gregori, Veronica
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (01)
  • [44] Congruence properties of pseudocomplemented De Morgan algebras
    Sankappanavar, Hanamantagouda P.
    de Carvalho, Julia Vaz
    MATHEMATICAL LOGIC QUARTERLY, 2014, 60 (06) : 425 - 436
  • [45] Varieties of Regular Pseudocomplemented de Morgan Algebras
    M. E. Adams
    H. P. Sankappanavar
    Júlia Vaz de Carvalho
    Order, 2020, 37 : 529 - 557
  • [46] On a subvariety of semi-De Morgan algebras
    C. Palma
    R. Santos
    Acta Mathematica Hungarica, 2003, 98 : 323 - 328
  • [47] Subalgebras of Heyting and De Morgan Heyting Algebras
    Castano, Valeria
    Munoz Santis, Marcela
    STUDIA LOGICA, 2011, 98 (1-2) : 123 - 139
  • [48] On a subvariety of semi-De Morgan algebras
    Palma, C
    Santos, R
    ACTA MATHEMATICA HUNGARICA, 2003, 98 (04) : 323 - 344
  • [49] Tense Operators and Dynamic De Morgan algebras
    Chajda, Ivan
    Paseka, Jan
    2013 IEEE 43RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2013), 2013, : 225 - 230
  • [50] Subalgebras of Heyting and De Morgan Heyting Algebras
    Valeria Castaño
    Marcela Muñoz Santis
    Studia Logica, 2011, 98 : 123 - 139