Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets

被引:0
|
作者
L. Poladian
L.S. Jermiin
机构
[1] University of Sydney,School of Mathematics and Statistics
[2] University of Sydney,School of Biological Sciences, and the Sydney University Biological Informatics and Technology Centre
来源
Soft Computing | 2006年 / 10卷
关键词
Phylogenetic inference; Evolutionary algorithms; Multiobjective optimisation;
D O I
暂无
中图分类号
学科分类号
摘要
Evolutionary relationships among species are usually (1) illustrated by means of a phylogenetic tree and (2) inferred by optimising some measure of fitness, such as the total evolutionary distance between species or the likelihood of the tree (given a model of the evolutionary process and a data set). The combinatorial complexity of inferring the topology of the best tree makes phylogenetic inference an ideal candidate for evolutionary algorithms. However, difficulties arise when different data sets provide conflicting information about the inferred `best' tree(s). We apply the techniques of multi-objective optimisation to phylogenetic inference for the first time. We use the simplest model of evolution and a four species problem to illustrate the method.
引用
收藏
页码:359 / 368
页数:9
相关论文
共 50 条
  • [1] Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets
    Poladian, L
    Jermiin, LS
    [J]. SOFT COMPUTING, 2006, 10 (04) : 359 - 368
  • [2] A multi-objective evolutionary approach for phylogenetic inference
    Cancino, Waldo
    Delbem, Alexandre C. B.
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 428 - +
  • [3] A Parallel Multi-Objective Evolutionary Algorithm for Phylogenetic Inference
    Cancino, Waldo
    Jourdan, Laetitia
    Talbi, El-Ghazali
    Delbem, Alexandre C. B.
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION, 2010, 6073 : 196 - +
  • [4] An effective model of multiple multi-objective evolutionary algorithms with the assistance of regional multi-objective evolutionary algorithms: VIPMOEAs
    Cheshmehgaz, Hossein Rajabalipour
    Desa, Mohamad Ishak
    Wibowo, Antoni
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (05) : 2863 - 2895
  • [5] Data Structures in Multi-Objective Evolutionary Algorithms
    Najwa Altwaijry
    Mohamed El Bachir Menai
    [J]. Journal of Computer Science & Technology, 2012, 27 (06) : 1197 - 1210
  • [6] Data Structures in Multi-Objective Evolutionary Algorithms
    Altwaijry, Najwa
    Menai, Mohamed El Bachir
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (06): : 1197 - 1210
  • [7] Data Structures in Multi-Objective Evolutionary Algorithms
    Najwa Altwaijry
    Mohamed El Bachir Menai
    [J]. Journal of Computer Science and Technology, 2012, 27 : 1197 - 1210
  • [8] The review of multiple evolutionary searches and multi-objective evolutionary algorithms
    Hossein Rajabalipour Cheshmehgaz
    Habibollah Haron
    Abdollah Sharifi
    [J]. Artificial Intelligence Review, 2015, 43 : 311 - 343
  • [9] The review of multiple evolutionary searches and multi-objective evolutionary algorithms
    Cheshmehgaz, Hossein Rajabalipour
    Haron, Habibollah
    Sharifi, Abdollah
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (03) : 311 - 343
  • [10] Tuning Multi-Objective Evolutionary Algorithms on Different Sized Problem Sets
    Crepinsek, Matej
    Ravber, Miha
    Mernik, Marjan
    Kosar, Tomaz
    [J]. MATHEMATICS, 2019, 7 (09)