The Existence of Semi-colorings in a Graph

被引:0
|
作者
Michitaka Furuya
Masaru Kamada
Kenta Ozeki
机构
[1] Tokyo University of Science,Department of Mathematical Information Science
[2] National Institute of Informatics,undefined
[3] JST,undefined
[4] ERATO,undefined
[5] Kawarabayashi Large Graph Project,undefined
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Semi-coloring; -factor; Almost regular graph;
D O I
暂无
中图分类号
学科分类号
摘要
A semi-coloring is a fractional-type edge coloring of graphs. Daniely and Linial (J Graph Theory 69:426–440, 2012) conjectured that every graph has a semi-coloring. In this paper, we give an affirmative answer to this conjecture by considering a 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-factor in almost regular graphs.
引用
收藏
页码:1397 / 1401
页数:4
相关论文
共 50 条
  • [21] EVEN EDGE COLORINGS OF A GRAPH
    ALON, N
    EGAWA, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) : 93 - 94
  • [22] FIBONACCI IDENTITIES AND GRAPH COLORINGS
    Hillar, Christopher J.
    Windfeldt, Troels
    FIBONACCI QUARTERLY, 2008, 46-47 (03): : 220 - 224
  • [23] On the maximum number of colorings of a graph
    Erey, Aysel
    JOURNAL OF COMBINATORICS, 2018, 9 (03)
  • [24] On minimum entropy graph colorings
    Cardinal, J
    Fiorini, S
    Van Assche, G
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 43 - 43
  • [25] The complexity of generalized graph colorings
    Brown, JI
    DISCRETE APPLIED MATHEMATICS, 1996, 69 (03) : 257 - 270
  • [26] POLYNOMIAL GRAPH-COLORINGS
    GUTJAHR, W
    WELZL, E
    WOEGINGER, G
    DISCRETE APPLIED MATHEMATICS, 1992, 35 (01) : 29 - 45
  • [27] Zeons, Orthozeons, and Graph Colorings
    Staples, G. Stacey
    Stellhorn, Tiffany
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1825 - 1845
  • [28] Dynamic proper colorings of a graph
    Karpov D.V.
    Journal of Mathematical Sciences, 2011, 179 (5) : 601 - 615
  • [29] Counting Colorings of a Regular Graph
    Galvin, David
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 629 - 638
  • [30] GRAPH PROPERTIES AND HYPERGRAPH COLORINGS
    BROWN, JI
    CORNEIL, DG
    DISCRETE MATHEMATICS, 1991, 98 (02) : 81 - 93