Asymptotics and oscillation of nth-order nonlinear differential equations with p-Laplacian like operators

被引:0
|
作者
Shao-Yan Zhang
Qi-Ru Wang
Ravi P Agarwal
机构
[1] Guangdong University of Finance,Department of Mathematics
[2] Sun Yat-sen University,School of Mathematics and Computational Science
[3] Texas A&M University-Kingsville,Department of Mathematics
[4] King Abdulaziz University,Department of Mathematics
关键词
th-order nonlinear differential equations; asymptotic behavior; oscillation; -Laplacian;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with nth-order nonlinear differential equations of the form (a(t)|x(n−1)(t)|p−2x(n−1)(t))′+r(t)|x(n−1)(t)|p−2x(n−1)(t)+q(t)|x(g(t))|p−2x(g(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(a(t)|x^{(n-1)}(t)|^{p-2}x^{(n-1)}(t) )^{\prime}+ r(t)|x^{(n-1)}(t)|^{p-2}x^{(n-1)}(t)+q(t)|x(g(t))|^{p-2}x(g(t))=0 $\end{document} with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge2$\end{document}. By discussing the signs of ith-order derivatives of eventually positive solutions, for i=1,…,n−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,\ldots,n-1$\end{document}, and using the generalized Riccati technique and integral averaging technique, we derive new criteria for oscillation and asymptotic behavior of the equation. Our results generalize and improve many existing results in the literature.
引用
收藏
相关论文
共 50 条