Asymptotics and oscillation of nth-order nonlinear differential equations with p-Laplacian like operators

被引:0
|
作者
Shao-Yan Zhang
Qi-Ru Wang
Ravi P Agarwal
机构
[1] Guangdong University of Finance,Department of Mathematics
[2] Sun Yat-sen University,School of Mathematics and Computational Science
[3] Texas A&M University-Kingsville,Department of Mathematics
[4] King Abdulaziz University,Department of Mathematics
关键词
th-order nonlinear differential equations; asymptotic behavior; oscillation; -Laplacian;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with nth-order nonlinear differential equations of the form (a(t)|x(n−1)(t)|p−2x(n−1)(t))′+r(t)|x(n−1)(t)|p−2x(n−1)(t)+q(t)|x(g(t))|p−2x(g(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(a(t)|x^{(n-1)}(t)|^{p-2}x^{(n-1)}(t) )^{\prime}+ r(t)|x^{(n-1)}(t)|^{p-2}x^{(n-1)}(t)+q(t)|x(g(t))|^{p-2}x(g(t))=0 $\end{document} with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge2$\end{document}. By discussing the signs of ith-order derivatives of eventually positive solutions, for i=1,…,n−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,\ldots,n-1$\end{document}, and using the generalized Riccati technique and integral averaging technique, we derive new criteria for oscillation and asymptotic behavior of the equation. Our results generalize and improve many existing results in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Asymptotics and oscillation of nth-order nonlinear differential equations with p-Laplacian like operators
    Zhang, Shao-Yan
    Wang, Qi-Ru
    Agarwal, Ravi P.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 16
  • [2] Existence of solutions for 2 nth-order nonlinear p-Laplacian differential equations
    Saavedra, Lorena
    Tersian, Stepan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 : 507 - 519
  • [3] Forced oscillation of nth-order nonlinear differential equations
    Yang, XJ
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 301 - 305
  • [4] Forced oscillation of nth-order nonlinear differential equations
    Agarwal, RP
    Grace, SR
    APPLIED MATHEMATICS LETTERS, 2000, 13 (07) : 53 - 57
  • [5] Oscillation of fourth-order neutral differential equations with p-Laplacian like operators
    Tongxing Li
    Blanka Baculíková
    Jozef Džurina
    Chenghui Zhang
    Boundary Value Problems, 2014
  • [6] Oscillation of fourth-order neutral differential equations with p-Laplacian like operators
    Li, Tongxing
    Baculikova, Blanka
    Dzurina, Jozef
    Zhang, Chenghui
    BOUNDARY VALUE PROBLEMS, 2014,
  • [7] Asymptotics and oscillation of nth-order nonlinear dynamic equations on time scales
    Zhang, Shao-Yan
    Wang, Qi-Ru
    Kong, Qingkai
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 324 - 334
  • [8] NONLINEAR EQUATIONS OF FOURTH-ORDER WITH p-LAPLACIAN LIKE OPERATORS: OSCILLATION, METHODS AND APPLICATIONS
    Bazighifan, Omar
    Ragusa, Maria Alessandra
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (03) : 1009 - 1020
  • [9] Triple Positive Solutions for nth-Order Impulsive Differential Equations with Integral Boundary Conditions and p-Laplacian
    Li, Peiluan
    Wu, Yusen
    RESULTS IN MATHEMATICS, 2012, 61 (3-4) : 401 - 419
  • [10] Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators
    Zhang, Chenghui
    Agarwal, Ravi P.
    Li, Tongxing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 1093 - 1106