Rotation Bounds for Hölder Continuous Homeomorphisms with Integrable Distortion

被引:0
|
作者
A. Clop
L. Hitruhin
B. Sengupta
机构
[1] Universitat de Barcelona,Department of Mathematics and Computer Science
[2] Aalto University,Department of Mathematics and Systems Analysis
[3] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
关键词
Mappings of finite distortion; Quasiconformal maps; Rotation bounds;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain sharp rotation bounds for the subclass of homeomorphisms f:C→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb {C}}\rightarrow {\mathbb {C}}$$\end{document} of finite distortion which have distortion function in Llocp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p_{loc}$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, and for which a Hölder continuous inverse is available. The interest in this class is partially motivated by examples arising from fluid mechanics. Our rotation bounds hereby presented improve the existing ones, for which the Hölder continuity is not assumed. We also present examples proving sharpness.
引用
收藏
相关论文
共 50 条
  • [1] Rotation Bounds for Holder Continuous Homeomorphisms with Integrable Distortion
    Clop, A.
    Hitruhin, L.
    Sengupta, B.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (08)
  • [2] ROTATIONAL PROPERTIES OF HOMEOMORPHISMS WITH INTEGRABLE DISTORTION
    Hitruhin, Lauri
    [J]. CONFORMAL GEOMETRY AND DYNAMICS, 2018, 22 : 78 - 98
  • [3] Extension of planar Hölder homeomorphisms
    Hencl, Stanislav
    Koski, Aleksis
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (03):
  • [4] Dimension compression and expansion under homeomorphisms with exponentially integrable distortion
    Hitruhin, Lauri
    [J]. ARKIV FOR MATEMATIK, 2022, 60 (02): : 387 - 415
  • [5] Hölder Continuity of Homeomorphisms with Controlled Growth of Their Spherical Means
    Anatoly Golberg
    Ruslan Salimov
    [J]. Complex Analysis and Operator Theory, 2017, 11 : 1825 - 1838
  • [6] POINTWISE ROTATION FOR MAPPINGS WITH EXPONENTIALLY INTEGRABLE DISTORTION
    Hitruhin, Lauri
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5183 - 5195
  • [7] Error Bounds and Hölder Metric Subregularity
    Alexander Y. Kruger
    [J]. Set-Valued and Variational Analysis, 2015, 23 : 705 - 736
  • [8] MAXIMUM AGREEMENT SUBTREES AND HÖLDER HOMEOMORPHISMS BETWEEN BROWNIAN TREES
    Budzinski, Thomas
    Senizergues, Delphin
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11 : 395 - 430
  • [9] Hölder Error Bounds and Hölder Calmness with Applications to Convex Semi-infinite Optimization
    Alexander Y. Kruger
    Marco A. López
    Xiaoqi Yang
    Jiangxing Zhu
    [J]. Set-Valued and Variational Analysis, 2019, 27 : 995 - 1023
  • [10] The Hölder property of singular invariant measures of circle homeomorphisms with single corners
    A. A. Dzhalilov
    [J]. Theoretical and Mathematical Physics, 1999, 121 : 1557 - 1566