Hölder Error Bounds and Hölder Calmness with Applications to Convex Semi-infinite Optimization

被引:0
|
作者
Alexander Y. Kruger
Marco A. López
Xiaoqi Yang
Jiangxing Zhu
机构
[1] Centre for Informatics and Applied Optimization,Department of Mathematics
[2] Federation University Australia,Department of Applied Mathematics
[3] University of Alicante,Department of Mathematics
[4] The Hong Kong Polytechnic University,undefined
[5] Yunnan University,undefined
来源
关键词
Hölder error bounds; Hölder calmness; Convex programming; Semi-infinite programming; 49J53; 90C25; 90C31; 90C34;
D O I
暂无
中图分类号
学科分类号
摘要
Using techniques of variational analysis, necessary and sufficient subdifferential conditions for Hölder error bounds are investigated and some new estimates for the corresponding modulus are obtained. As an application, we consider the setting of convex semi-infinite optimization and give a characterization of the Hölder calmness of the argmin mapping in terms of the level set mapping (with respect to the objective function) and a special supremum function. We also estimate the Hölder calmness modulus of the argmin mapping in the framework of linear programming.
引用
收藏
页码:995 / 1023
页数:28
相关论文
共 50 条
  • [1] Holder Error Bounds and Holder Calmness with Applications to Convex Semi-infinite Optimization
    Kruger, Alexander Y.
    Lopez, Marco A.
    Yang, Xiaoqi
    Zhu, Jiangxing
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2019, 27 (04) : 995 - 1023
  • [2] Error Bounds and Hölder Metric Subregularity
    Alexander Y. Kruger
    [J]. Set-Valued and Variational Analysis, 2015, 23 : 705 - 736
  • [3] Isolated calmness of solution mappings in convex semi-infinite optimization
    Canovas, M. J.
    Dontchev, A. L.
    Lopez, M. A.
    Parra, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (02) : 829 - 837
  • [4] On Hölder Calmness and Hölder Well-Posedness of Vector Quasi-Equilibrium Problems
    Anh L.Q.
    Khanh P.Q.
    Tam T.N.
    Van D.T.M.
    [J]. Vietnam Journal of Mathematics, 2013, 41 (4) : 507 - 517
  • [5] On Hölder calmness of solution mappings in parametric equilibrium problems
    L. Q. Anh
    A. Y. Kruger
    N. H. Thao
    [J]. TOP, 2014, 22 : 331 - 342
  • [6] STABILITY OF ERROR BOUNDS FOR SEMI-INFINITE CONVEX CONSTRAINT SYSTEMS
    Ngai, Huynh Van
    Kruger, Alexander
    Thera, Michel
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 2080 - 2096
  • [7] Isolated Calmness and Sharp Minima via Hölder Graphical Derivatives
    Alexander Y. Kruger
    Marco A. López
    Xiaoqi Yang
    Jiangxing Zhu
    [J]. Set-Valued and Variational Analysis, 2022, 30 (4) : 1423 - 1441
  • [8] Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization
    M. J. Cánovas
    A. Hantoute
    J. Parra
    F. J. Toledo
    [J]. Journal of Optimization Theory and Applications, 2014, 160 : 111 - 126
  • [9] Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization
    Canovas, M. J.
    Hantoute, A.
    Parra, J.
    Toledo, F. J.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 111 - 126
  • [10] Hölder’s inequalities involving the infinite product and their applications in martingale spaces
    W. Chen
    L. B. Jia
    Y. Jiao
    [J]. Analysis Mathematica, 2016, 42 : 121 - 141