Desingularization of 3D steady Euler equations with helical symmetry

被引:0
|
作者
Daomin Cao
Jie Wan
机构
[1] Chinese Academy of Sciences,Institute of Applied Mathematics, AMSS
[2] University of Chinese Academy of Sciences,School of Mathematics and Statistics
[3] Beijing Institute of Technology,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study desingularization of steady solutions of 3D incompressible Euler equation with helical symmetry in a general helical domain. We construct a family of steady helical Euler flows, such that the associated vorticities tend asymptotically to a helical vortex filament. The solutions are obtained by solving a semilinear elliptic problem in divergence form with a parameter -ε2div(KH(x)∇u)=fu-q|lnε|inΩ,u=0on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\varepsilon ^2\text {div}(K_H(x)\nabla u)=f\left( u-q|\ln \varepsilon |\right) \ \text {in}\ \Omega ,\ \ \ u=0\ \text {on}\ \partial \Omega . \end{aligned}$$\end{document}By using the variational method, we show that for any 0<ε<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0<\varepsilon <1 $$\end{document}, there exist ground states concentrating near minimum points of q2det(KH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q^2\sqrt{det(K_H)} $$\end{document} as the parameter ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon \rightarrow 0 $$\end{document}. These results show a striking difference with the 2D and the 3D axisymmetric Euler equation cases.
引用
收藏
相关论文
共 50 条
  • [1] Desingularization of 3D steady Euler equations with helical symmetry
    Cao, Daomin
    Wan, Jie
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (09)
  • [2] Helical symmetry vortices for 3D incompressible Euler equations
    Cao, Daomin
    Lai, Shanfa
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 360 : 67 - 89
  • [3] Concentrated solutions with helical symmetry for the 3D Euler equation and rearrangments
    Cao, Daomin
    Fan, Boquan
    Lai, Shanfa
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 394 : 152 - 173
  • [4] Deformation and Symmetry in the Inviscid SQG and the 3D Euler Equations
    Dongho Chae
    Peter Constantin
    Jiahong Wu
    [J]. Journal of Nonlinear Science, 2012, 22 : 665 - 688
  • [5] Deformation and Symmetry in the Inviscid SQG and the 3D Euler Equations
    Chae, Dongho
    Constantin, Peter
    Wu, Jiahong
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (05) : 665 - 688
  • [6] Smooth Approximations and Exact Solutions of the 3D Steady Axisymmetric Euler Equations
    Quansen Jiu
    Zhouping Xin
    [J]. Communications in Mathematical Physics, 2009, 287
  • [7] Smooth Approximations and Exact Solutions of the 3D Steady Axisymmetric Euler Equations
    Jiu, Quansen
    Xin, Zhouping
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) : 323 - 349
  • [8] An invariant for the 3D Euler equations
    He, X
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (04) : 55 - 58
  • [9] On a degenerate hyperbolic problem for the 3-D steady full Euler equations with axial-symmetry
    Hu, Yanbo
    Li, Fengyan
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 584 - 615
  • [10] Structure of Green's function of elliptic equations and helical vortex patches for 3D incompressible Euler equations
    Cao, Daomin
    Wan, Jie
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2671 - 2703