An invariant for the 3D Euler equations

被引:1
|
作者
He, X [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
invariants; 3D Euler equation; Navier-Stokes turbulence;
D O I
10.1016/S0893-9659(99)00034-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for an ideal incompressible fluid in the presence of a conservative body force, there exists a time invariant, a vector A = (A(1),A(2),A(3)) It is discussed that the invariance of At is probably linked to geometrical structures of Navier-Stokes turbulence. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:55 / 58
页数:4
相关论文
共 50 条
  • [1] Axisymmetric solutions to the 3D Euler equations
    Shen Gang
    Zhu Xiangrong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (09) : 1938 - 1948
  • [2] Blowup for the 3D compressible Euler equations
    Zhu, Xusheng
    Tu, Aihua
    Fu, Chunyan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 : 51 - 60
  • [3] EULER-LAGRANGIAN APPROACH TO 3D STOCHASTIC EULER EQUATIONS
    Flandoli, Franco
    Luo, Dejun
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02): : 153 - 165
  • [4] Stretching and compression of vorticity in the 3D Euler equations
    Gibbon, JD
    Galanti, B
    Kerr, RM
    TURBULENCE STRUCTURE AND VORTEX DYNAMICS, 2001, : 23 - 34
  • [5] On the lagrangian dynamics for the 3D incompressible Euler equations
    Chae, Dongho
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (02) : 557 - 569
  • [6] THE LINEARIZED 3D EULER EQUATIONS WITH INFLOW, OUTFLOW
    Gie, Gung-min
    Kelliher, James P.
    Mazzucato, Anna L.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2023, 28 (5-6) : 373 - 412
  • [7] On the Lagrangian Dynamics for the 3D Incompressible Euler Equations
    Dongho Chae
    Communications in Mathematical Physics, 2007, 269 : 557 - 569
  • [8] Locality of Vortex Stretching for the 3D Euler Equations
    Yuuki Shimizu
    Tsuyoshi Yoneda
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [9] Locality of Vortex Stretching for the 3D Euler Equations
    Shimizu, Yuuki
    Yoneda, Tsuyoshi
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (01)
  • [10] On the Lagrangian dynamics of the axisymmetric 3D Euler equations
    Chae, Dongho
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (03) : 571 - 577