THE LINEARIZED 3D EULER EQUATIONS WITH INFLOW, OUTFLOW

被引:1
|
作者
Gie, Gung-min [1 ]
Kelliher, James P. [2 ]
Mazzucato, Anna L. [3 ]
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40292 USA
[2] Univ Calif Riverside, Dept Math, 900 Univ Ave, Riverside, CA 92521 USA
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
新加坡国家研究基金会; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
DOMAINS;
D O I
10.57262/ade028-0506-373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1983, Antontsev, Kazhikhov, and Monakhov published a proof of the existence and uniqueness of solutions to the 3D Euler equations in which on certain inflow boundary components fluid is forced into the domain while on other outflow components fluid is drawn out of the domain. A key tool they used was the linearized Euler equations in vorticity form. We extend their result on the linearized problem to multiply connected domains and establish compatibility conditions on the initial data that allow higher regularity solutions.
引用
收藏
页码:373 / 412
页数:40
相关论文
共 50 条
  • [1] Inflow-outflow problems for Euler equations in a rectangular cylinder
    Gazzola, F
    Secchi, P
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (02): : 195 - 217
  • [2] Inflow-outflow problems for Euler equations in a rectangular cylinder
    Filippo Gazzola
    Paolo Secchi
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2001, 8 : 195 - 217
  • [3] An invariant for the 3D Euler equations
    He, X
    [J]. APPLIED MATHEMATICS LETTERS, 1999, 12 (04) : 55 - 58
  • [4] Axisymmetric solutions to the 3D Euler equations
    Shen Gang
    Zhu Xiangrong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (09) : 1938 - 1948
  • [5] Blowup for the 3D compressible Euler equations
    Zhu, Xusheng
    Tu, Aihua
    Fu, Chunyan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 : 51 - 60
  • [6] EULER-LAGRANGIAN APPROACH TO 3D STOCHASTIC EULER EQUATIONS
    Flandoli, Franco
    Luo, Dejun
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02): : 153 - 165
  • [7] On the Lagrangian Dynamics for the 3D Incompressible Euler Equations
    Dongho Chae
    [J]. Communications in Mathematical Physics, 2007, 269 : 557 - 569
  • [8] On the lagrangian dynamics for the 3D incompressible Euler equations
    Chae, Dongho
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (02) : 557 - 569
  • [9] Stretching and compression of vorticity in the 3D Euler equations
    Gibbon, JD
    Galanti, B
    Kerr, RM
    [J]. TURBULENCE STRUCTURE AND VORTEX DYNAMICS, 2001, : 23 - 34
  • [10] Locality of Vortex Stretching for the 3D Euler Equations
    Yuuki Shimizu
    Tsuyoshi Yoneda
    [J]. Journal of Mathematical Fluid Mechanics, 2023, 25