A subgradient method for multiobjective optimization

被引:0
|
作者
J. X. Da Cruz Neto
G. J. P. Da Silva
O. P. Ferreira
J. O. Lopes
机构
[1] Universidade Federal do Piauí,DM
[2] Universidade Federal de Goiás,IME
关键词
Pareto optimality or efficiency; Multiobjective optimization; Subgradient method; Quasi-Féjer convergence;
D O I
暂无
中图分类号
学科分类号
摘要
A method for solving quasiconvex nondifferentiable unconstrained multiobjective optimization problems is proposed in this paper. This method extends to the multiobjective case of the classical subgradient method for real-valued minimization. Assuming the basically componentwise quasiconvexity of the objective components, full convergence (to Pareto optimal points) of all the sequences produced by the method is established.
引用
下载
收藏
页码:461 / 472
页数:11
相关论文
共 50 条
  • [41] Spectral projected subgradient method for nonsmooth convex optimization problems
    Krejic, Natasa
    Jerinkic, Natasa Krklec
    Ostojic, Tijana
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 347 - 365
  • [42] A STOCHASTIC SUBGRADIENT METHOD FOR NONSMOOTH NONCONVEX MULTILEVEL COMPOSITION OPTIMIZATION
    Ruszczynski, Andrzej
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 2301 - 2320
  • [43] Spectral projected subgradient method for nonsmooth convex optimization problems
    Nataša Krejić
    Nataša Krklec Jerinkić
    Tijana Ostojić
    Numerical Algorithms, 2023, 93 : 347 - 365
  • [44] STOCHASTIC SUBGRADIENT METHOD FOR QUASI-CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Li, Chong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) : 711 - 724
  • [45] Weak subgradient method for solving nonsmooth nonconvex optimization problems
    Yalcin, Gulcin Dinc
    Kasimbeyli, Refail
    OPTIMIZATION, 2021, 70 (07) : 1513 - 1553
  • [46] A method of centers with approximate subgradient linearizations for nonsmooth convex optimization
    Kiwiel, Krzysztof C.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (04) : 1467 - 1489
  • [47] Multiobjective topology optimization with the sko-method
    Inzenhofer, Andre
    Haikonen, Joona
    Hupfer, Andreas
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (01) : 325 - 340
  • [48] An accelerated proximal gradient method for multiobjective optimization
    Hiroki Tanabe
    Ellen H. Fukuda
    Nobuo Yamashita
    Computational Optimization and Applications, 2023, 86 : 421 - 455
  • [49] Generalized center method for multiobjective engineering optimization
    Cheng, FY
    Li, XS
    ENGINEERING OPTIMIZATION, 1999, 31 (05) : 641 - 661
  • [50] A barrier-type method for multiobjective optimization
    Fukuda, Ellen H.
    Drummond, L. M. Grana
    Raupp, Fernanda M. P.
    OPTIMIZATION, 2020, 69 (11) : 2471 - 2487