General stability for piezoelectric beams with a nonlinear damping term

被引:0
|
作者
Messaoudi H. [1 ,2 ]
Zitouni S. [2 ]
Khochemane H.E. [3 ]
Ardjouni A. [2 ]
机构
[1] Laboratory of Informatics and Mathematics, Department of Mathematics and Informatics, University of Souk-Ahras, P.O. Box 1553, Souk Ahras
[2] Department of Mathematics and Informatics, University of Souk-Ahras, P.O. Box 1553, Souk Ahras
[3] Ecole normale supérieure d’enseignement technologique, Skikda, Azzaba
关键词
Energy method; General decay; Lyapunov functional; Nonlinear damping; Piezoelectric beams; Semigroup approach;
D O I
10.1007/s11565-022-00443-4
中图分类号
学科分类号
摘要
In this article, we consider the one-dimensional system of piezoelectric beams with a nonlinear damping term. First, we show the existence and uniqueness of solutions by the semi-group technique more precisely by Hille-Yosida theorem. And by building an appropriate Lyapunov functional, we establish general decay results for the solution of the system whose exponential and polynomial decays are only special cases. Moreover, our results does not depend on any relation between the parameters of the system. © 2022, The Author(s) under exclusive license to Università degli Studi di Ferrara.
引用
收藏
页码:443 / 462
页数:19
相关论文
共 50 条
  • [41] Multimodal Damping of a Nonlinear Structure with a Passive Piezoelectric Network
    Lossouarn, B.
    Deu, J-F
    Kerschen, G.
    SPECIAL TOPICS IN STRUCTURAL DYNAMICS, VOL 5, 2019, : 161 - 163
  • [42] Piezoelectric actuation of a flapping wing accounting for nonlinear damping
    Olympio, K. Raymond
    Poulin-Vittrant, Guylaine
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2011, 2011, 7977
  • [43] Stability of a nonlinear oscillator with random damping
    Leprovost, N.
    Aumaitre, S.
    Mallick, K.
    EUROPEAN PHYSICAL JOURNAL B, 2006, 49 (04): : 453 - 458
  • [44] Stability of a nonlinear oscillator with random damping
    N. Leprovost
    S. Aumaître
    K. Mallick
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 49 : 453 - 458
  • [45] Global well-posedness and general energy decay of solutions for fully dynamic and electrostatic piezoelectric beams with a viscoelastic damping
    Messaoudi, Hassan
    Douib, Madani
    Zitouni, Salah
    FILOMAT, 2024, 38 (27) : 9475 - 9492
  • [46] Nonlinear response of flapping beams to resonant excitations under nonlinear damping
    Ozcelik, Orhan
    Attar, Peter J.
    ACTA MECHANICA, 2015, 226 (12) : 4281 - 4307
  • [47] Nonlinear response of flapping beams to resonant excitations under nonlinear damping
    Orhan Ozcelik
    Peter J. Attar
    Acta Mechanica, 2015, 226 : 4281 - 4307
  • [48] Global solvability and asymptotic stability for the wave equation with nonlinear boundary damping and source term
    Cavalcanti, MM
    Cavalcanti, VND
    Soriano, JA
    CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 161 - +
  • [49] ATTRACTORS FOR A CLASS OF EXTENSIBLE BEAMS WITH STRONG NONLINEAR DAMPING
    Tavares, Eduardo Henrique Gomes
    Narciso, Vando
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 2081 - 2097
  • [50] Equivalent stiffness and damping of sandwich piezoelectric beams submitted to active control
    Duigou, L
    Daya, EM
    Potier-Ferry, M
    SMART MATERIALS AND STRUCTURES, 2006, 15 (02) : 623 - 630