KMS States, Entropy and the Variational Principle¶in Full C*-Dynamical Systems

被引:0
|
作者
C. Pinzari
Y. Watatani--RID="**"-->
K. Yonetani
机构
[1] Mathematics Department,
[2] Massachusetts Institute of Technology,undefined
[3] Cambridge,undefined
[4] MA 02139,undefined
[5] USA.¶E-mail: pinzari@mat.uniroma2.it,undefined
[6] Graduate School of Mathematics,undefined
[7] Kyushu University,undefined
[8] Fukuoka 810-8560,undefined
[9] Japan.¶E-mail: watatani@rc.kyushu-u.ac.jp; yonetani@math.kyushu-u.ac.jp,undefined
来源
关键词
Entropy; Variational Principle; Spectral Radius; Fractal Geometry; Inverse Temperature;
D O I
暂无
中图分类号
学科分类号
摘要
To any periodic and full C*-dynamical system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, an invertible operator s acting on the Banach space of trace functionals of the fixed point algebra is canonically associated. KMS states correspond to positive eigenvectors of s. A Perron–Frobenius type theorem asserts the existence of KMS states at inverse temperatures equals the logarithms of the inner and outer spectral radii of s (extremal KMS states). Examples arising from subshifts in symbolic dynamics, self-similar sets in fractal geometry and noncommutative metric spaces are discussed.
引用
收藏
页码:331 / 379
页数:48
相关论文
共 50 条