Panconnectivity of Cartesian product graphs

被引:0
|
作者
You Lu
Jun-Ming Xu
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
关键词
Graph theory; Interconnection networks; Panconnectivity; Cartesian product; Hypercubes; -ary ; -cubes;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G of order n (≥2) is said to be panconnected if for each pair (x,y) of vertices of G there exists an xy-path of length ℓ for each ℓ such that dG(x,y)≤ℓ≤n−1, where dG(x,y) denotes the length of a shortest xy-path in G. In this paper, we consider the panconnectivity of Cartesian product graphs. As a consequence of our results, we prove that the n-dimensional generalized hypercube Qn(k1,k2,…,kn) is panconnected if and only if ki≥3 (i=1,…,n), which generalizes a result of Hsieh et al. that the 3-ary n-cube \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q^{3}_{n}$\end{document} is panconnected.
引用
收藏
页码:182 / 189
页数:7
相关论文
共 50 条
  • [1] Panconnectivity of Cartesian product graphs
    Lu, You
    Xu, Jun-Ming
    [J]. JOURNAL OF SUPERCOMPUTING, 2011, 56 (02): : 182 - 189
  • [2] THE PANCONNECTIVITY ON GRAPHS
    WEI, B
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 623 - 629
  • [3] On subgraphs of Cartesian product graphs
    Klavzar, S
    Lipovec, A
    Petkovsek, M
    [J]. DISCRETE MATHEMATICS, 2002, 244 (1-3) : 223 - 230
  • [4] Differential in Cartesian Product Graphs
    Sigarreta, Jose M.
    [J]. ARS COMBINATORIA, 2016, 126 : 259 - 267
  • [5] The profile of the Cartesian product of graphs
    Kuo, David
    Yan, Jing-Ho
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 2835 - 2845
  • [6] Connectivity of Cartesian product graphs
    Xu, JM
    Yang, C
    [J]. DISCRETE MATHEMATICS, 2006, 306 (01) : 159 - 165
  • [7] On linkedness in the Cartesian product of graphs
    Gábor Mészáros
    [J]. Periodica Mathematica Hungarica, 2016, 72 : 130 - 138
  • [8] On linkedness in the Cartesian product of graphs
    Meszaros, Gabor
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 130 - 138
  • [9] The antimagicness of the Cartesian product of graphs
    Zhang, Yuchen
    Sun, Xiaoming
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 727 - 735
  • [10] The Cartesian product of graphs with loops
    Boiko, Tetiana
    Cuno, Johannes
    Imrich, Wilfried
    Lehner, Florian
    van de Woestijne, Christiaan E.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (01) : 1 - 9