Differential in Cartesian Product Graphs

被引:0
|
作者
Sigarreta, Jose M. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco, Guerrero, Mexico
关键词
differential; domination number; cartesian product graphs;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma(V, E) be a graph of order n, S subset of V and let B(S) be the set of vertices in V \ S that have a neighbor in a set S. The differential of a set S is defined as partial derivative(S) = vertical bar B(S)vertical bar - vertical bar S vertical bar and the differential of the graph Gamma is defined as partial derivative(Gamma) = max{partial derivative(S) : S subset of V}. In this paper we obtain several tight bounds for the differential in Cartesian product graphs. In particular, we relate the differential in Cartesian product graphs with some known parameters of Gamma(1) x Gamma(2), namely, its domination number, its maximum and minimum degree and its order. Furthermore, we compute explicitly the differential of some class of product graphs.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 50 条
  • [1] On subgraphs of Cartesian product graphs
    Klavzar, S
    Lipovec, A
    Petkovsek, M
    [J]. DISCRETE MATHEMATICS, 2002, 244 (1-3) : 223 - 230
  • [2] Panconnectivity of Cartesian product graphs
    Lu, You
    Xu, Jun-Ming
    [J]. JOURNAL OF SUPERCOMPUTING, 2011, 56 (02): : 182 - 189
  • [3] The profile of the Cartesian product of graphs
    Kuo, David
    Yan, Jing-Ho
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (15) : 2835 - 2845
  • [4] Connectivity of Cartesian product graphs
    Xu, JM
    Yang, C
    [J]. DISCRETE MATHEMATICS, 2006, 306 (01) : 159 - 165
  • [5] On linkedness in the Cartesian product of graphs
    Gábor Mészáros
    [J]. Periodica Mathematica Hungarica, 2016, 72 : 130 - 138
  • [6] On linkedness in the Cartesian product of graphs
    Meszaros, Gabor
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 130 - 138
  • [7] Panconnectivity of Cartesian product graphs
    You Lu
    Jun-Ming Xu
    [J]. The Journal of Supercomputing, 2011, 56 : 182 - 189
  • [8] The antimagicness of the Cartesian product of graphs
    Zhang, Yuchen
    Sun, Xiaoming
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 727 - 735
  • [9] The Cartesian product of graphs with loops
    Boiko, Tetiana
    Cuno, Johannes
    Imrich, Wilfried
    Lehner, Florian
    van de Woestijne, Christiaan E.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (01) : 1 - 9
  • [10] On the connectivity of Cartesian product of graphs
    Govorcin, Jelena
    Skrekovski, Riste
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (02) : 293 - 297