Contractions without non-trivial invariant subspaces satisfying a positivity condition

被引:0
|
作者
Bhaggy Duggal
In Ho Jeon
In Hyoun Kim
机构
[1] Seoul National University of Education,Department of Mathematics Education
[2] Incheon National University,Department of Mathematics
关键词
class ; operator; class ; operator; operator; class ; operator; contraction; proper contraction; strongly stable; 47B20; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
An operator A∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in B(\mathcal{H})$\end{document}, the algebra of bounded linear transformations on a complex infinite dimensional Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document}, belongs to class A(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(n)$\end{document} (resp., A(∗−n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}(*-n)$\end{document}) if |A|2≤|An+1|2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A\vert^{2}\leq\vert A^{n+1}\vert^{\frac{2}{n+1}}$\end{document} (resp., |A∗|2≤|An+1|2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{*}\vert^{2}\leq \vert A^{n+1}\vert^{\frac{2}{n+1}}$\end{document}) for some integer n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq1$\end{document}, and an operator A∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in B(\mathcal{H})$\end{document} is called n-paranormal, denoted A∈P(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in \mathcal{P}(n)$\end{document} (resp., ∗−n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$*-n$\end{document}-paranormal, denoted A∈P(∗−n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in \mathcal{P}(*-n)$\end{document}) if ∥Ax∥n+1≤∥An+1x∥∥x∥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Vert Ax\Vert ^{n+1}\leq \Vert A^{n+1}x\Vert \Vert x\Vert ^{n}$\end{document} (resp., ∥A∗x∥n+1≤∥An+1x∥∥x∥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Vert A^{*}x\Vert ^{n+1}\leq \Vert A^{n+1}x\Vert \Vert x\Vert ^{n}$\end{document}) for some integer n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq 1$\end{document} and all x∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x \in\mathcal{H}$\end{document}. In this paper, we prove that if A∈{A(n)∪P(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in\{\mathcal{A}(n)\cup \mathcal{P}(n)\}$\end{document} (resp., A∈{A(∗−n)∪P(∗−n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in\{\mathcal{A}(*-n)\cup \mathcal{P}(*-n)\}$\end{document}) is a contraction without a non-trivial invariant subspace, then A, |An+1|2n+1−|A|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+1}\vert^{\frac{2}{n+1}}-\vert A\vert^{2}$\end{document} and |An+1|2−n+1n|A|2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+1}\vert^{2}- {\frac{n+1}{n}}\vert A\vert^{2}+ 1$\end{document} (resp., A, |An+1|2n+1−|A∗|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+1}\vert^{\frac{2}{n+1}}-\vert A^{*}\vert^{2}$\end{document} and |An+2|2−n+1n|A|2+1≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert A^{n+2}\vert^{2}- {\frac{n+1}{n}}\vert A\vert^{2}+ 1\geq0$\end{document}) are proper contractions.
引用
收藏
相关论文
共 47 条
  • [22] ELLIPTIC-CURVES WITH NON-INTEGRAL J-INVARIANT AND NON-TRIVIAL HASSE INVARIANT
    VANSTEEN, G
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1984, 87 (04): : 437 - 448
  • [23] On a problem of A. Nagy concerning permutable semigroups satisfying a non-trivial permutation identity
    Deak, Attila
    ACTA SCIENTIARUM MATHEMATICARUM, 2006, 72 (3-4): : 537 - 541
  • [24] COUNTABLY COMPACT GROUPS WITHOUT NON-TRIVIAL CONVERGENT SEQUENCES
    Hrusak, M.
    Van Mill, J.
    Ramos-Garcia, U. A.
    Shelah, S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 1277 - 1296
  • [25] A topological transformation group without non-trivial equivariant compactifications
    Pestov, Vladimir G.
    ADVANCES IN MATHEMATICS, 2017, 311 : 1 - 17
  • [26] Morphisms for Non-trivial Non-linear Invariant Generation for Algebraic Hybrid Systems
    Matringe, Nadir
    Moura, Arnaldo Vieira
    Rebiha, Rachid
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2009, 5469 : 445 - +
  • [27] CONDITION FOR EXISTENCE OF NON-TRIVIAL UNITS OF FINITE ORDER IN GROUP RINGS
    STANLEY, WL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A569 - A569
  • [28] Cosmology in rotation-invariant massive gravity with non-trivial fiducial metric
    Langlois, David
    Mukohyama, Shinji
    Namba, Ryo
    Naruko, Atsushi
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (17)
  • [29] A complete metric space without non-trivial separable Lipschitz retracts
    Hajek, Petr
    Quilis, Andres
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (02)
  • [30] DOES A TYPICAL lp-SPACE CONTRACTION HAVE A NON-TRIVIAL INVARIANT SUBSPACE?
    Grivaux, Sophie
    Matheron, Etienne
    Menet, Quentin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (10) : 7359 - 7410