Asymptotic analysis for a homogeneous bubbling regime Vlasov–Fokker–Planck/Navier–Stokes system

被引:0
|
作者
Joshua Ballew
机构
[1] Slippery Rock University of Pennsylvania,Department of Mathematical and Statistics
关键词
Fluid–particle interaction; Vlasov–Euler system; Vlasov–Navier–Stokes system; Primary 35Q99; Secondary 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
The evolution of a cloud of particles in a compressible fluid can be modeled with a Vlasov–Fokker–Planck equation for the distribution function of the particles coupled with Navier–Stokes or Euler equations for the density and velocity of the fluid. Formal calculations have established the convergence of solution to the mesoscopic model to solutions to the macroscopic Navier–Stokes or Euler model coupled with a Smoluchowski equation as the ratio of the settling time for the microscopic velocity fluctuation of the particles to the characteristic macroscopic time scale goes to zero. This paper provides a rigorous asymptotic analysis for a homogeneous mesoscopic fluid–particle interaction model for particles dispersed in a compressible fluid is provided for the bubbling regime. A relative entropy inequality for a mixed hyperbolic/parabolic system of equations is employed.
引用
收藏
相关论文
共 50 条
  • [21] Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system with nonhomogeneous boundary data
    Li, Yue
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [22] Global weak solutions of the Navier–Stokes–Fokker–Planck system
    S. M. Egorov
    E. Ya. Khruslov
    Ukrainian Mathematical Journal, 2013, 65 : 212 - 248
  • [23] Spatially homogeneous solutions of the Vlasov-Nordstrom-Fokker-Planck system
    Alcantara Felix, Jose Antonio
    Calogero, Simone
    Pankavich, Stephen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (10) : 3700 - 3729
  • [24] Global existence of weak and classical solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2431 - 2465
  • [25] Incompressible Navier-Stokes limit from nonlinear Vlasov-Fokker-Planck equation
    Choi, Young-Pil
    Jung, Jinwook
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [26] Hydrodynamic limit for the inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations
    Su, Yunfei
    Yao, Lei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (02) : 1079 - 1116
  • [27] Global weak solutions of the Navier-Stokes-Fokker-Planck system
    Egorov, S. M.
    Khruslov, E. Ya
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (02) : 212 - 248
  • [28] VARIATIONAL ASYMPTOTIC PRESERVING SCHEME FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM
    Carrillo, Jose A.
    Wang, Li
    Xu, Wuzhe
    Yan, Ming
    MULTISCALE MODELING & SIMULATION, 2021, 19 (01): : 478 - 505
  • [29] Asymptotic behaviour of the Vlasov-Poisson-Fokker-Planck system in bounded domains
    Bonilla, LL
    Carrillo, JA
    Soler, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 485 - 486
  • [30] ASYMPTOTIC-BEHAVIOR FOR THE FRICTIONLESS VLASOV-POISSON-FOKKER-PLANCK SYSTEM
    CARRILLO, JA
    SOLER, J
    VAZQUEZ, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (09): : 1195 - 1200