Asymptotic analysis for a homogeneous bubbling regime Vlasov–Fokker–Planck/Navier–Stokes system

被引:0
|
作者
Joshua Ballew
机构
[1] Slippery Rock University of Pennsylvania,Department of Mathematical and Statistics
关键词
Fluid–particle interaction; Vlasov–Euler system; Vlasov–Navier–Stokes system; Primary 35Q99; Secondary 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
The evolution of a cloud of particles in a compressible fluid can be modeled with a Vlasov–Fokker–Planck equation for the distribution function of the particles coupled with Navier–Stokes or Euler equations for the density and velocity of the fluid. Formal calculations have established the convergence of solution to the mesoscopic model to solutions to the macroscopic Navier–Stokes or Euler model coupled with a Smoluchowski equation as the ratio of the settling time for the microscopic velocity fluctuation of the particles to the characteristic macroscopic time scale goes to zero. This paper provides a rigorous asymptotic analysis for a homogeneous mesoscopic fluid–particle interaction model for particles dispersed in a compressible fluid is provided for the bubbling regime. A relative entropy inequality for a mixed hyperbolic/parabolic system of equations is employed.
引用
收藏
相关论文
共 50 条
  • [1] Asymptotic analysis for a homogeneous bubbling regime Vlasov-Fokker-Planck/Navier-Stokes system
    Ballew, Joshua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [2] Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain
    Choi, Young-Pil
    Jung, Jinwook
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (11): : 2213 - 2295
  • [3] Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations
    A. Mellet
    A. Vasseur
    Communications in Mathematical Physics, 2008, 281 : 573 - 596
  • [4] Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations
    Mellet, A.
    Vasseur, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (03) : 573 - 596
  • [5] The Navier–Stokes–Vlasov–Fokker–Planck System in Bounded Domains
    Hailiang Li
    Shuangqian Liu
    Tong Yang
    Journal of Statistical Physics, 2022, 186
  • [6] On the α-Navier-Stokes-Vlasov and the α-Navier-Stokes-Vlasov-Fokker-Planck equations
    Pinheiro, Cristyan
    Planas, Gabriela
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [7] The Navier-Stokes-Vlasov-Fokker-Planck System in Bounded Domains
    Li, Hailiang
    Liu, Shuangqian
    Yang, Tong
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (03)
  • [8] THE NAVIER-STOKES-VLASOV-FOKKER-PLANCK SYSTEM NEAR EQUILIBRIUM
    Goudon, Thierry
    He, Lingbing
    Moussa, Ayman
    Zhang, Ping
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (05) : 2177 - 2202
  • [9] The Navier–Stokes–Vlasov–Fokker–Planck System as a Scaling Limit of Particles in a Fluid
    Franco Flandoli
    Marta Leocata
    Cristiano Ricci
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [10] The Navier-Stokes-Vlasov-Fokker-Planck System as a Scaling Limit of Particles in a Fluid
    Flandoli, Franco
    Leocata, Marta
    Ricci, Cristiano
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (02)