Characterization and Modeling of Hot Deformation Behavior of a Copper-Bearing High-Strength Low-Carbon Steel Microalloyed with Nb

被引:0
|
作者
M. T. Seiyedbeigi
S. R. Hosseini
A. Eshaghi
机构
[1] Maleke-ashtar University of Technology,Department of Materials Engineering
关键词
constitutive modeling; Cu-bearing Nb-HSLC steel; dynamic recrystallization; dynamic strain aging; hot deformation; Nb microalloyed;
D O I
暂无
中图分类号
学科分类号
摘要
This study investigates hot deformation behavior of a newly developed Cu-bearing high-strength low-carbon steel microalloyed with Nb (Nb-HSLC). A computational method based on experimental data was employed to design the chemical composition of the alloy. Compression tests were carried out in the temperature range of 850-1100 °C as well as strain rates of 0.001-10 s−1 using BAHR Dil 805 A/D thermo-analyzer equipment. The Arrhenius-type constitutive equations were used to model the hot working behavior of the designed steel. Effects of friction and temperature rise during deformation were corrected to obtain the actual stresses. The results showed that the peak flow stress was increased with increasing Zener–Hollomon parameter. The obtained flow curves at strain rates lower than 0.1 s−1 and temperatures above 950 °C represented the typical dynamic recrystallization (DRX) behavior, while the flow curves at temperatures lower than 950 °C at all strain rates were associated with continuous strain hardening. This feature is in good agreement with the precipitation temperature range of Nb(C, N) particles, i.e., 800-1000 °C. Moreover, the flow curves showed the serrations during hot deformation at strain rates of 0.001 and 0.01 s−1, indicating that the dynamic strain aging (DSA) phenomenon occurred at low strain rates. The best fit between “peak stress” and “deformation conditions” was obtained by a hyperbolic sine-type equation (R2 = 0.993). Therefore, the average activation energy was determined as 348 kJ mol−1. The agreement between the achieved model and experimental flow data was verified using the results of additional tests at a strain rate of 5 s−1. The maximum difference between the measured and predicted “peak stresses” was calculated as 5 Mpa.
引用
收藏
页码:4324 / 4334
页数:10
相关论文
共 50 条
  • [41] Warm Deformation and Dynamic Strain Aging of a Nb-Cr Microalloyed Low-Carbon Steel
    Zhigang Wang
    Xin Liu
    Qiangqiang Yuan
    Rongchun Chen
    Jianguo He
    Jing Qin
    Yao Huang
    Hongjin Zhao
    Metallurgical and Materials Transactions A, 2020, 51 : 4623 - 4631
  • [42] Hot deformation behavior and microstructural evolution of Nb-V-Ti microalloyed ultra-high strength steel
    Dong, Ji
    Li, Chong
    Liu, Chenxi
    Huang, Yuan
    Yu, Liming
    Li, Huijun
    Liu, Yongchang
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (19) : 3777 - 3787
  • [43] Hot deformation behavior and microstructural evolution of Nb-V-Ti microalloyed ultra-high strength steel
    Ji Dong
    Chong Li
    Chenxi Liu
    Yuan Huang
    Liming Yu
    Huijun Li
    Yongchang Liu
    Journal of Materials Research, 2017, 32 : 3777 - 3787
  • [44] Strengthening of the low-carbon high-strength steel through deformation within the intercritical temperature interval
    Pyshmintsev, I.Yu.
    Korzinkov, V.A.
    Valiev, R.Z.
    Khotinov, V.A.
    Metallovedenie i Termicheskaya Obrabotka Metallov, 1999, (05): : 11 - 15
  • [45] Structure and Properties of a Low-Carbon, Microalloyed, Ultra-High-Strength Steel
    P. S. Bandyopadhyay
    S. Kundu
    S. K. Ghosh
    S. Chatterjee
    Metallurgical and Materials Transactions A, 2011, 42 : 1051 - 1061
  • [46] Structure and Properties of a Low-Carbon, Microalloyed, Ultra-High-Strength Steel
    Bandyopadhyay, P. S.
    Kundu, S.
    Ghosh, S. K.
    Chatterjee, S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (04): : 1051 - 1061
  • [47] Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel
    Chen, Jianguo
    Liu, Yongchang
    Liu, Chenxi
    Zhou, Xiaosheng
    Li, Huijun
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (07) : 1376 - 1385
  • [48] Microstructure evolution and constitutive modeling of Cu-bearing high-strength low-alloy steel during hot deformation
    Kan, Liye
    Ye, Qibin
    Zhang, Shiwei
    Wang, Zhaodong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 212 - 222
  • [49] Structure formation in high-strength nitrogen-bearing steel on hot deformation
    Fomina O.V.
    Fomina, O.V. (oknir@crism.ru), 1600, Allerton Press Incorporation (47): : 172 - 177
  • [50] Study on microstructural evolution and constitutive modeling for hot deformation behavior of a low-carbon RAFM steel
    Jianguo Chen
    Yongchang Liu
    Chenxi Liu
    Xiaosheng Zhou
    Huijun Li
    Journal of Materials Research, 2017, 32 : 1376 - 1385