On the evolution of solutions of mixed problems in thermoelasticity of porous bodies with dipolar structure

被引:0
|
作者
Marin Marin
Andreas Öchsner
Mohamed I. A. Othman
机构
[1] Transilvania University of Brasov,Department of Mathematics and Computer Science
[2] Esslingen University of Applied Sciences,Faculty of Mechanical and Systems Engineering
[3] Zagazig University,Faculty of Science, Department of Mathematics
来源
关键词
Dipolar structure; Voids; Thermoelastic; Acceleration waves;
D O I
暂无
中图分类号
学科分类号
摘要
Our study deals with a thermoelastic body with pores. We have added a new independent variable, namely the time derivative of the voidage. Within the theory of such media, we analyze the spatial and temporal evolution of solutions. For the spatial behavior, we will prove certain estimations of the Saint-Venant type, in the situation the bodies are bounded. In the case the bodies are unbounded bodies, to describe the spatial evolution we consider certain estimations of the Phragmén–Lindelöf type.
引用
收藏
页码:491 / 506
页数:15
相关论文
共 50 条
  • [1] On the evolution of solutions of mixed problems in thermoelasticity of porous bodies with dipolar structure
    Marin, Marin
    Oechsner, Andreas
    Othman, Mohamed I. A.
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2022, 34 (02) : 491 - 506
  • [2] Evolution of solutions for dipolar bodies in Thermoelasticity without energy dissipation
    Marin, Marin
    Abbas, Ibrahim
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01): : 57 - 82
  • [3] On temporal behaviour of solutions in Thermoelasticity of porous micropolar bodies
    Marin, Marin
    Florea, Olivia
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (01): : 169 - 188
  • [4] Cesaro means in thermoelasticity of dipolar bodies
    M. Marin
    [J]. Acta Mechanica, 1997, 122 : 155 - 168
  • [5] Cesaro means in thermoelasticity of dipolar bodies
    Marin, M
    [J]. ACTA MECHANICA, 1997, 122 (1-4) : 155 - 168
  • [6] An evolutionary equation in thermoelasticity of dipolar bodies
    Marin, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1391 - 1399
  • [7] Some Results in Green-Lindsay Thermoelasticity of Bodies with Dipolar Structure
    Marin, Marin
    Craciun, Eduard M.
    Pop, Nicolae
    [J]. MATHEMATICS, 2020, 8 (04)
  • [8] ANALYTICAL SOLUTIONS OF PROBLEMS OF THERMOELASTICITY FOR MULTILAYERED BODIES WITH VARIABLE PROPERTIES
    Kudinov, V. A.
    Kuznetsova, A. E.
    Eremin, A. V.
    Kotova, E. V.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2013, (01): : 215 - 221
  • [9] Some Estimates on Vibrations in Thermoelasticity of Dipolar Bodies
    Marin, M.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (01) : 33 - 47
  • [10] On the possibility of locating in time of solutions for thermoelastic porous dipolar bodies
    Marin, Marin
    Agarwal, Ravi P.
    [J]. ACTA MECHANICA, 2015, 226 (06) : 2053 - 2063