An evolutionary equation in thermoelasticity of dipolar bodies

被引:67
|
作者
Marin, M [1 ]
机构
[1] Univ Brasov, Fac Math, Brasov 2200, Romania
关键词
D O I
10.1063/1.532809
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we apply the theory of semigroups of operators in order to obtain the existence and uniqueness of solutions for the mixed initial-boundary value problems in thermoelasticity of dipolar bodies. The continuous dependence of the solutions upon initial data and supply terms is also proved. (C) 1999 American Institute of Physics. [S0022-2488(99)03203-X].
引用
收藏
页码:1391 / 1399
页数:9
相关论文
共 50 条
  • [1] Cesaro means in thermoelasticity of dipolar bodies
    M. Marin
    [J]. Acta Mechanica, 1997, 122 : 155 - 168
  • [2] Cesaro means in thermoelasticity of dipolar bodies
    Marin, M
    [J]. ACTA MECHANICA, 1997, 122 (1-4) : 155 - 168
  • [3] Some Estimates on Vibrations in Thermoelasticity of Dipolar Bodies
    Marin, M.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (01) : 33 - 47
  • [4] Qualitative results in thermoelasticity of type III for dipolar bodies
    Marin, M.
    Vlase, S.
    Ochsner, A.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (01): : 127 - 142
  • [5] On vibrations in Green-Naghdi thermoelasticity of dipolar bodies
    Marin, M.
    Chirila, A.
    Codarcea, L.
    Vlase, S.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (01): : 125 - 140
  • [6] Evolution of solutions for dipolar bodies in Thermoelasticity without energy dissipation
    Marin, Marin
    Abbas, Ibrahim
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01): : 57 - 82
  • [7] On the evolution of solutions of mixed problems in thermoelasticity of porous bodies with dipolar structure
    Marin Marin
    Andreas Öchsner
    Mohamed I. A. Othman
    [J]. Continuum Mechanics and Thermodynamics, 2022, 34 : 491 - 506
  • [8] Some Results in Green-Lindsay Thermoelasticity of Bodies with Dipolar Structure
    Marin, Marin
    Craciun, Eduard M.
    Pop, Nicolae
    [J]. MATHEMATICS, 2020, 8 (04)
  • [9] Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies
    Marin, Marin
    Ochsner, Andreas
    Bhatti, Muhammad Mubashir
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (12):
  • [10] On the evolution of solutions of mixed problems in thermoelasticity of porous bodies with dipolar structure
    Marin, Marin
    Oechsner, Andreas
    Othman, Mohamed I. A.
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2022, 34 (02) : 491 - 506