Mathematical analysis to optimize crystal growth

被引:0
|
作者
C. Destenave Rodriguez
Javier Morales-Castillo
José Roberto Cantú-González
F-Javier Almaguer
J. M. Martinez
机构
[1] Prolongación Ignacio comonfort 2050 Antigua Aduana,Pedro de Alba S/N, Ciudad Universitaria
[2] Universidad Autónoma de Nuevo León,undefined
[3] Universidad Autónoma de Coahuila,undefined
[4] Escuela de Sistemas PMRV,undefined
来源
关键词
Population balance equations (PBE); Cubic spline; Least squares; Janecke phase diagrams; Glauber salt; Lagrange polynomial; 34-04; 97-04; 41-04; 65-04; 97-06;
D O I
暂无
中图分类号
学科分类号
摘要
For the production of sodium sulfate, a brine is crystallized and crystals of glauber salt are generated by this process. The phase data related to the most common sodium sulfate minerals are as follows: mirabilite (Na2SO4 ⋅ 10H2O), tenardite (Na2SO4), glauberite (Na2SO4 ⋅ CaSO4), astrakanite (Na2SO4 ⋅ MgSO4 ⋅ 4H2O). The units commonly used to express the phases are moles of salt per 1000 moles of water. These latter units simplify the construction of the commonly employed four-sided Janecke phase diagrams. The cooling temperature or the speed with which the solution is cooled has an effect on the size and purity, as well as the amount of crystals produced. We seek to establish, through the population balance equations (PBE), which process variables can be modified to obtain a specific crystal size, as well as to validate the mathematical model that best predicts the amount of crystals precipitated as a function of temperature. The adjustment by least squares, cubic splines, pitzer equations and Lagrange interpolation is tested. The experimental results agree with the characteristics of the proposed models.
引用
收藏
页码:2083 / 2096
页数:13
相关论文
共 50 条
  • [31] REGENERATIVE GROWTH IN SALAMANDERS - A MATHEMATICAL-ANALYSIS
    VOIT, EO
    ANTON, HJ
    ARCHIVES D ANATOMIE MICROSCOPIQUE ET DE MORPHOLOGIE EXPERIMENTALE, 1984, 73 (04): : 312 - 312
  • [32] Mathematical Analysis of Glioma Growth in a Murine Model
    Rutter, Erica M.
    Stepien, Tracy L.
    Anderies, Barrett J.
    Plasencia, Jonathan D.
    Woolf, Eric C.
    Scheck, Adrienne C.
    Turner, Gregory H.
    Liu, Qingwei
    Frakes, David
    Kodibagkar, Vikram
    Kuang, Yang
    Preul, Mark C.
    Kostelich, Eric J.
    SCIENTIFIC REPORTS, 2017, 7
  • [33] Synergizing LED Technology and Hydropriming for Intelligent Modeling and Mathematical Expressions to Optimize Chickpea Germination and Growth Indices
    Aasim, Muhammad
    Akin, Fatma
    Ali, Seyid Amjad
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (07) : 2340 - 2359
  • [34] A review of mathematical functions for the analysis of growth in poultry
    Kuhi, H. Darmani
    Porter, T.
    Lopez, S.
    Kebreab, E.
    Strathe, A. B.
    Dumas, A.
    Dijkstra, J.
    France, J.
    WORLDS POULTRY SCIENCE JOURNAL, 2010, 66 (02) : 227 - 239
  • [35] Analysis of a mathematical model of the growth of necrotic tumors
    Cui, SB
    Friedman, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (02) : 636 - 677
  • [36] A Mathematical Analysis of Fractional Fragmentation Dynamics with Growth
    Goufo, Emile Franc Doungmo
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [37] A MATHEMATICAL ANALYSIS OF GROWTH AND SPREAD OF BREAST CANCER
    BLUMENSON, LE
    BROSS, IDJ
    BIOMETRICS, 1969, 25 (01) : 95 - +
  • [38] Mathematical Analysis of Glioma Growth in a Murine Model
    Erica M. Rutter
    Tracy L. Stepien
    Barrett J. Anderies
    Jonathan D. Plasencia
    Eric C. Woolf
    Adrienne C. Scheck
    Gregory H. Turner
    Qingwei Liu
    David Frakes
    Vikram Kodibagkar
    Yang Kuang
    Mark C. Preul
    Eric J. Kostelich
    Scientific Reports, 7
  • [39] Analysis of a mathematical model for the growth of cancer cells
    Kohlmann, Martin
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2013, 30 (02): : 175 - 189
  • [40] Analysis of a delayed mathematical model for tumor growth
    Xu, Shihe
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4121 - 4127