Mathematical analysis to optimize crystal growth

被引:0
|
作者
C. Destenave Rodriguez
Javier Morales-Castillo
José Roberto Cantú-González
F-Javier Almaguer
J. M. Martinez
机构
[1] Prolongación Ignacio comonfort 2050 Antigua Aduana,Pedro de Alba S/N, Ciudad Universitaria
[2] Universidad Autónoma de Nuevo León,undefined
[3] Universidad Autónoma de Coahuila,undefined
[4] Escuela de Sistemas PMRV,undefined
来源
关键词
Population balance equations (PBE); Cubic spline; Least squares; Janecke phase diagrams; Glauber salt; Lagrange polynomial; 34-04; 97-04; 41-04; 65-04; 97-06;
D O I
暂无
中图分类号
学科分类号
摘要
For the production of sodium sulfate, a brine is crystallized and crystals of glauber salt are generated by this process. The phase data related to the most common sodium sulfate minerals are as follows: mirabilite (Na2SO4 ⋅ 10H2O), tenardite (Na2SO4), glauberite (Na2SO4 ⋅ CaSO4), astrakanite (Na2SO4 ⋅ MgSO4 ⋅ 4H2O). The units commonly used to express the phases are moles of salt per 1000 moles of water. These latter units simplify the construction of the commonly employed four-sided Janecke phase diagrams. The cooling temperature or the speed with which the solution is cooled has an effect on the size and purity, as well as the amount of crystals produced. We seek to establish, through the population balance equations (PBE), which process variables can be modified to obtain a specific crystal size, as well as to validate the mathematical model that best predicts the amount of crystals precipitated as a function of temperature. The adjustment by least squares, cubic splines, pitzer equations and Lagrange interpolation is tested. The experimental results agree with the characteristics of the proposed models.
引用
收藏
页码:2083 / 2096
页数:13
相关论文
共 50 条
  • [1] Mathematical analysis to optimize crystal growth
    Destenave Rodriguez, C.
    Morales-Castillo, Javier
    Roberto Cantu-Gonzalez, Jose
    Almaguer, F-Javier
    Martinez, J. M.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (04) : 2083 - 2096
  • [2] MATHEMATICAL CRYSTAL GROWTH-I
    KLARNER, DA
    DISCRETE APPLIED MATHEMATICS, 1981, 3 (01) : 47 - 52
  • [3] Mathematical modeling of semiconductor crystal growth
    Schvezov, C
    ANALES DE LA ASOCIACION QUIMICA ARGENTINA, 1996, 84 (03): : 261 - 264
  • [4] A MATHEMATICAL APPROACH TO CRYSTAL-GROWTH
    CAGINALP, G
    SUPERLATTICES AND MICROSTRUCTURES, 1987, 3 (06) : 595 - 598
  • [5] MATHEMATICAL CRYSTAL-GROWTH .2.
    KLARNER, DA
    DISCRETE APPLIED MATHEMATICS, 1981, 3 (02) : 113 - 117
  • [6] System of mathematical models for the analysis of industrial FZ-Si-crystal growth processes
    Muehlbauer, A
    Muiznieks, A
    Raming, G
    CRYSTAL RESEARCH AND TECHNOLOGY, 1999, 34 (02) : 217 - 226
  • [7] MATHEMATICAL ANALYSIS DENDRITIC GROWTH
    NASH, GE
    GLICKSMA.ME
    REPORT OF NRL PROGRESS, 1970, (DEC): : 21 - &
  • [8] Mathematical model of multizone thermal installation for crystal growth
    Babushkin, Yuri V.
    Philippov, Maksim M.
    Nguyen, Xuan Hung
    Gribenyukov, Aleksandr I.
    2014 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, AUTOMATION AND CONTROL SYSTEMS (MEACS), 2014,
  • [9] Mathematical model and numerical simulation of faceted crystal growth
    M. P. Marchenko
    I. V. Fryazinov
    Crystallography Reports, 2005, 50 : 1034 - 1042
  • [10] Mathematical model and numerical simulation of faceted crystal growth
    Marchenko, MP
    Fryazinov, IV
    CRYSTALLOGRAPHY REPORTS, 2005, 50 (06) : 1034 - 1042