A Multidimensional Functional Equation Having Quadratic Forms as Solutions

被引:0
|
作者
Won-Gil Park
Jae-Hyeong Bae
机构
[1] National Institute for Mathematical Sciences,Department of Applied Mathematics
[2] Kyung Hee University,undefined
关键词
General Solution; Functional Equation; Quadratic Form; Quadratic Functional Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the general solution and the stability of the[inline-graphic not available: see fulltext]-variable quadratic functional equation[inline-graphic not available: see fulltext] The quadratic form[inline-graphic not available: see fulltext] is a solution of the given functional equation.
引用
收藏
相关论文
共 50 条
  • [41] ON STABILITY OF A FUNCTIONAL EQUATION OF QUADRATIC TYPE
    Brzdek, J.
    Jablonska, E.
    Moslehian, M. S.
    Pacho, P.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (01) : 160 - 169
  • [42] On stability of a functional equation of quadratic type
    J. Brzdęk
    E. Jabłońska
    M. S. Moslehian
    P. Pacho
    Acta Mathematica Hungarica, 2016, 149 : 160 - 169
  • [43] Approximation on the Quadratic Reciprocal Functional Equation
    Bodaghi, Abasalt
    Kim, Sang Og
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [44] On the quadratic functional equation modulo a subgroup
    Jung, SM
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2005, 36 (08): : 441 - 450
  • [45] Stability of a quadratic functional equation on semigroups
    Kominek, Zygfryd
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 75 (1-2): : 173 - 178
  • [46] ON THE STABILITY OF AN ALTERNATIVE QUADRATIC FUNCTIONAL EQUATION
    Nakmahachalasint, Paisan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 179 - 185
  • [47] Density of integer solutions to diagonal quadratic forms
    Browning, T. D.
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 13 - 38
  • [48] Density of integer solutions to diagonal quadratic forms
    T. D. Browning
    Monatshefte für Mathematik, 2007, 152 : 13 - 38
  • [49] Separable quadratic differential forms and Einstein solutions
    Kasner, E
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1925, 11 : 95 - 96
  • [50] Exact solutions in multidimensional gravity with antisymmetric forms
    Ivashchuk, VD
    Melnikov, VN
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (20) : R87 - R152