Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics

被引:0
|
作者
Marc Duquesnoy
Teo Lombardo
Fernando Caro
Florent Haudiquez
Alain C. Ngandjong
Jiahui Xu
Hassan Oularbi
Alejandro A. Franco
机构
[1] Laboratoire de Réactivité et Chimie des Solides (LRCS),
[2] UMR CNRS 7314,undefined
[3] Université de Picardie Jules Verne,undefined
[4] ALISTORE-European Research Institute,undefined
[5] FR CNRS 3104,undefined
[6] Reseau sur le Stockage Electrochimique de l’Energie (RS2E),undefined
[7] FR CNRS 3459,undefined
[8] Institut Universitaire de France,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties. However, ensuring that these properties match with experimental data is typically computationally expensive. In this work, we tackled this costly procedure by proposing a functional data-driven framework, aiming first to retrieve the early numerical values calculated from a molecular dynamics simulation to predict if the observable being calculated is prone to match with our range of experimental values, and in a second step, recover additional values of the ongoing simulation to predict its final result. We demonstrated this approach in the context of the calculation of electrode slurries viscosities. We report that for various electrode chemistries, the expected mechanistic simulation results can be obtained 11 times faster with respect to the complete simulations, while being accurate with a Rscore2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{\rm{score}}^{2}$$\end{document} equals to 0.96.
引用
收藏
相关论文
共 50 条
  • [21] An integrated data-driven solar wind - CME numerical framework for space weather forecasting
    Narechania, Nishant M.
    Nikolic, Ljubomir
    Freret, Lucie
    De Sterck, Hans
    Groth, Clinton P. T.
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2021, 11
  • [22] The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
    Hauswirth, Sandra M.
    Bierkens, Marc F. P.
    Beijk, Vincent
    Wanders, Niko
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (02) : 501 - 517
  • [23] Uncertainty Quantification Analysis of Wind Power: A Data-Driven Monitoring-Forecasting Framework
    Wei, Wei
    Wu, Jiang
    Yu, Yang
    Niu, Tong
    Deng, Xinxin
    IEEE ACCESS, 2021, 9 : 84403 - 84416
  • [24] Data-Driven Development of Lipid Force Fields for Molecular Dynamics Simulations
    Antila, Hanne S.
    Miettinen, Markus S.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 141A - 142A
  • [25] Data-driven modeling and forecasting of chaotic dynamics on inertial manifolds constructed as spectral submanifolds
    Liu, Aihui
    Axas, Joar
    Haller, George
    CHAOS, 2024, 34 (03)
  • [26] funcExplorer: a tool for fast data-driven functional characterisation of high-throughput expression data
    Kolberg, Liis
    Kuzmin, Ivan
    Adler, Priit
    Vilo, Jaak
    Peterson, Hedi
    BMC GENOMICS, 2018, 19
  • [27] A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue
    Suzuki, Jorge L.
    Tuttle, Tyler G.
    Roccabianca, Sara
    Zayernouri, Mohsen
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [28] funcExplorer: a tool for fast data-driven functional characterisation of high-throughput expression data
    Liis Kolberg
    Ivan Kuzmin
    Priit Adler
    Jaak Vilo
    Hedi Peterson
    BMC Genomics, 19
  • [29] Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework
    Al-Dahidi, Sameer
    Madhiarasan, Manoharan
    Al-Ghussain, Loiy
    Abubaker, Ahmad M.
    Ahmad, Adnan Darwish
    Alrbai, Mohammad
    Aghaei, Mohammadreza
    Alahmer, Hussein
    Alahmer, Ali
    Baraldi, Piero
    Zio, Enrico
    ENERGIES, 2024, 17 (16)
  • [30] Data-driven forecasting of FOWT dynamics and load time series using lidar inflow measurements
    Graefe, Moritz
    Pettas, Vasilis
    Cheng, Po Wen
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024, 2024, 2767