Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics

被引:0
|
作者
Marc Duquesnoy
Teo Lombardo
Fernando Caro
Florent Haudiquez
Alain C. Ngandjong
Jiahui Xu
Hassan Oularbi
Alejandro A. Franco
机构
[1] Laboratoire de Réactivité et Chimie des Solides (LRCS),
[2] UMR CNRS 7314,undefined
[3] Université de Picardie Jules Verne,undefined
[4] ALISTORE-European Research Institute,undefined
[5] FR CNRS 3104,undefined
[6] Reseau sur le Stockage Electrochimique de l’Energie (RS2E),undefined
[7] FR CNRS 3459,undefined
[8] Institut Universitaire de France,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties. However, ensuring that these properties match with experimental data is typically computationally expensive. In this work, we tackled this costly procedure by proposing a functional data-driven framework, aiming first to retrieve the early numerical values calculated from a molecular dynamics simulation to predict if the observable being calculated is prone to match with our range of experimental values, and in a second step, recover additional values of the ongoing simulation to predict its final result. We demonstrated this approach in the context of the calculation of electrode slurries viscosities. We report that for various electrode chemistries, the expected mechanistic simulation results can be obtained 11 times faster with respect to the complete simulations, while being accurate with a Rscore2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{\rm{score}}^{2}$$\end{document} equals to 0.96.
引用
收藏
相关论文
共 50 条
  • [1] Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
    Duquesnoy, Marc
    Lombardo, Teo
    Caro, Fernando
    Haudiquez, Florent
    Ngandjong, Alain C.
    Xu, Jiahui
    Oularbi, Hassan
    Franco, Alejandro A.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [2] Data-driven analysis and forecasting of highway traffic dynamics
    Avila, A. M.
    Mezic, I
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Data-driven analysis and forecasting of highway traffic dynamics
    A. M. Avila
    I. Mezić
    Nature Communications, 11
  • [4] Integrated data-driven framework for fast SCUC calculation
    Yang, Yafei
    Lu, Xiaoyu
    Wu, Lei
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (24) : 5728 - 5738
  • [5] A data-driven framework for forecasting transient vehicle thermal performances
    Zhao, Chuanning
    Kim, Changsu
    Won, Yoonjin
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2024, 85 (05) : 485 - 499
  • [6] Data-Driven Molecular Dynamics: A Multifaceted Challenge
    Bernetti, Mattia
    Bertazzo, Martina
    Masetti, Matteo
    PHARMACEUTICALS, 2020, 13 (09) : 1 - 26
  • [7] Advanced feature engineering in microgrid PV forecasting: A fast computing and data-driven hybrid modeling framework
    Habib, Md. Ahasan
    Hossain, M. J.
    RENEWABLE ENERGY, 2024, 235
  • [8] Data-driven respiratory gating for the uEXPLORER with fast dynamics
    Feng, Tao
    Yang, Gang
    Li, Hongdi
    Shi, Hongcheng
    Cherry, Simon
    Badawi, Ramsey
    Dong, Yun
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [9] Data-driven forecasting of nonequilibrium solid-state dynamics
    Meinecke, Stefan
    Koester, Felix
    Christiansen, Dominik
    Luedge, Kathy
    Knorr, Andreas
    Selig, Malte
    PHYSICAL REVIEW B, 2023, 107 (18)
  • [10] A Data-Driven Unified Framework for Predicting Citation Dynamics
    Gogoglou, Antonia
    Manolopoulos, Yannis
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (04) : 727 - 740