共 50 条
Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
被引:0
|作者:
Marc Duquesnoy
Teo Lombardo
Fernando Caro
Florent Haudiquez
Alain C. Ngandjong
Jiahui Xu
Hassan Oularbi
Alejandro A. Franco
机构:
[1] Laboratoire de Réactivité et Chimie des Solides (LRCS),
[2] UMR CNRS 7314,undefined
[3] Université de Picardie Jules Verne,undefined
[4] ALISTORE-European Research Institute,undefined
[5] FR CNRS 3104,undefined
[6] Reseau sur le Stockage Electrochimique de l’Energie (RS2E),undefined
[7] FR CNRS 3459,undefined
[8] Institut Universitaire de France,undefined
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties. However, ensuring that these properties match with experimental data is typically computationally expensive. In this work, we tackled this costly procedure by proposing a functional data-driven framework, aiming first to retrieve the early numerical values calculated from a molecular dynamics simulation to predict if the observable being calculated is prone to match with our range of experimental values, and in a second step, recover additional values of the ongoing simulation to predict its final result. We demonstrated this approach in the context of the calculation of electrode slurries viscosities. We report that for various electrode chemistries, the expected mechanistic simulation results can be obtained 11 times faster with respect to the complete simulations, while being accurate with a Rscore2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${R}_{\rm{score}}^{2}$$\end{document} equals to 0.96.
引用
收藏
相关论文