Prototype of a Computer Vision-Based CubeSat Detection System for Laser Communications

被引:0
|
作者
I. Medina
J. J. Hernández-Gómez
C. R. Torres-San Miguel
L. Santiago
C. Couder-Castañeda
机构
[1] Instituto Politécnico Nacional,
[2] Centro de Desarrollo Aeroespacial,undefined
[3] Instituto Politécnico Nacional,undefined
[4] Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco,undefined
[5] Sección de Estudios de Posgrado e Investigación,undefined
关键词
Computer vision; CubeSat; Pointing; Tracking; Satellites;
D O I
暂无
中图分类号
学科分类号
摘要
Up to now, CubeSat nano-satellites have strong limitations in communication data rates (∼100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \hbox {100}$$\end{document} kbps) and bandwidth due to the strictness of CubeSat standard. However, if they could be endowed with optical communications (data rates up to 1 Gbps in optimal state), CubeSat applications would exponentially increase. Nonetheless, laser communications face some important drawbacks as the development of a very strict and accurate tracking mechanism. This work proposes an on-board fine pointing system to locate an optical ground station beacon using an embedded system complying with the restrictive CubeSat standard. Such on-board fine pointing system works based on computer vision. The experimental prototype is implemented in Matlab/Simulink, within a Raspberry Pi 3B. The main outcome is the usage of off-the-shelf components (COTS), obtaining an efficient tracking with low power consumption in very noisy and reflective environments. The developed system proves to be fast, stable and strong. It also satisfies the strict size and power consumption restrictions of CubeSat standard.
引用
收藏
页码:717 / 725
页数:8
相关论文
共 50 条
  • [21] LIDAR and Vision-Based Pedestrian Detection System
    Premebida, Cristiano
    Ludwig, Oswaldo
    Nunes, Urbano
    JOURNAL OF FIELD ROBOTICS, 2009, 26 (09) : 696 - 711
  • [22] Computer vision-based system for early diagnosis of stereoscopic vision alterations
    Reguero, Dani Marfil
    Porcar, C. A.
    Boronat, F.
    Campos, E.
    INFORMATICS FOR HEALTH & SOCIAL CARE, 2023, 48 (02): : 165 - 180
  • [23] A vision-based system for early fire detection
    Santana, Pedro
    Gomes, Pedro
    Barata, Jose
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 739 - 744
  • [24] Computer vision-based automated defect detection in ceramic bricks
    Kataev, M. Y.
    Bulysheva, L. A.
    SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE, 2024,
  • [25] Computer Vision-Based Wildfire Smoke Detection Using UAVs
    Rahman, Ehab Ur
    Khan, Muhammad Asghar
    Algarni, Fahad
    Zhang, Yihong
    Uddin, M. Irfan
    Ullah, Insaf
    Ahmad, Hafiz Ishfaq
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [26] Indoor fire detection utilizing computer vision-based strategies
    Pincott, James
    Tien, Paige Wenbin
    Wei, Shuangyu
    Calautit, John Kaiser
    JOURNAL OF BUILDING ENGINEERING, 2022, 61
  • [27] Computer Vision-Based Crack Detection and Measurement on Concrete Structure
    Zhou Y.
    Liu T.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (09): : 1277 - 1285
  • [28] Vision-based automated inspection system in computer integrated manufacturing
    Chen, FL
    Su, CT
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 1996, 11 (03): : 206 - 213
  • [29] A Computer Vision-Based System for Metal Sheet Pick Counting
    Ji, Jirasak
    Pannakkong, Warut
    Buddhakulsomsiri, Jirachai
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 3643 - 3656