A Hybrid Model Based on Convolutional Neural Network and Long Short-Term Memory for Multi-label Text Classification

被引:0
|
作者
Hamed Khataei Maragheh
Farhad Soleimanian Gharehchopogh
Kambiz Majidzadeh
Amin Babazadeh Sangar
机构
[1] Islamic Azad University,Department of Computer Engineering, Urmia Branch
来源
关键词
Multi-label text classification; Long short-term memory; Convolutional neural network; Competitive search algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-label text classification (MLTC) is a popular method for organizing electronic documents, which is crucial for accessing and processing data. As the number of classes increases, learning multi-label data will be challenging. The number of possible states for various labels increases exponentially, and learning algorithms in single-label data cannot be used to solve these problems. In the meantime, using single-label data algorithms could be very time-consuming. In MLTC, complexity costs should be reduced. Deep-learning neural networks that can learn intricate patterns are used in many real-world problems because of their high power and accuracy. This paper proposed a hybridization of the long short-term memory (LSTM) neural network and the convolutional neural network (CNN) method for MLTC. The proposed model uses LSTM to enhance CNN to improve the proposed model’s accuracy. Also, the competitive search algorithm (CSA) is used to improve the LSTM hyperparameters. The LSTM hyperparameters play an important role in increasing the detection accuracy. The CSA algorithm finds the best values for the hyperparameters by searching the problem space. It was tested on four different datasets of multi-label texts: Reuters-21578, RCV1-v2, EUR-Lex, and Bookmarks. The result showed that the proposed model performed better than CNN and LSTM-CSA in terms of accuracy percentage and that it has improved by an average of more than 10%. Also, the results show that the LSTM-CSA model has higher detection accuracy compared to LSTM—Gradient-based optimizer (GBO) and LSTM—whale optimization algorithm (WOA).
引用
收藏
相关论文
共 50 条
  • [21] Latent Semantic Indexing and Convolutional Neural Network for Multi-Label and Multi-Class Text Classification
    Quispe, Oscar
    Ocsa, Alexander
    Coronado, Ricardo
    2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [22] A Deep Neural Network Approach using Convolutional Network and Long Short Term Memory for Text Sentiment Classification
    Shoryu, Teragawa
    Wang, Lei
    Ma, Ruixin
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 763 - 768
  • [23] A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction
    Pak, Unjin
    Kim, Chungsong
    Ryu, Unsok
    Sok, Kyongjin
    Pak, Sungnam
    AIR QUALITY ATMOSPHERE AND HEALTH, 2018, 11 (08): : 883 - 895
  • [24] A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction
    Unjin Pak
    Chungsong Kim
    Unsok Ryu
    Kyongjin Sok
    Sungnam Pak
    Air Quality, Atmosphere & Health, 2018, 11 : 883 - 895
  • [25] Convolutional neural network-based multi-label classification of PCB defects
    Zhang, Linlin
    Jin, Yongqing
    Yang, Xuesong
    Li, Xia
    Duan, Xiaodong
    Sun, Yuan
    Liu, Hong
    JOURNAL OF ENGINEERING-JOE, 2018, (16): : 1612 - 1616
  • [26] Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
    Wu, Daxin
    Hu, Zhubin
    Li, Jiebo
    Sun, Xiang
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [27] Encrypted Traffic Classification with a Convolutional Long Short-Term Memory Neural Network<bold> </bold>
    Zou, Zhuang
    Ge, Jingguo
    Zheng, Hongbo
    Wu, Yulei
    Han, Chunjing
    Yao, Zhongjiang
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 329 - 334
  • [28] A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory
    Qi, Yanlin
    Li, Qi
    Karimian, Hamed
    Liu, Di
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 664 : 1 - 10
  • [29] Multi-label text classification based on semantic-sensitive graph convolutional network
    Zeng, Delong
    Zha, Enze
    Kuang, Jiayi
    Shen, Ying
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [30] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Guo, Jing-Ming
    Markoni, Herleeyandi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (20) : 29059 - 29087