Face recognition in unconstrained environment with CNN

被引:0
|
作者
Hana Ben Fredj
Safa Bouguezzi
Chokri Souani
机构
[1] Université de Monastir,Laboratoire de microélectronique et instrumentations, Faculté des sciences de Monastir
[2] Université de Sousse,Institut supérieur des sciences appliquées et de technologie de Sousse
来源
The Visual Computer | 2021年 / 37卷
关键词
Face recognition; Deep learning; Data augmentation;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the performance and to conduct the final classification. The experiment results show that the suggested system achieves comparable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks.
引用
收藏
页码:217 / 226
页数:9
相关论文
共 50 条
  • [21] Evaluation of Face Recognition Methods in Unconstrained Environments
    Agrawal, Amrit Kumar
    Singh, Yogendra Narain
    INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONVERGENCE (ICCC 2015), 2015, 48 : 644 - 651
  • [22] Unconstrained Face Recognition using Bayesian Classification
    Vinay, A.
    Gupta, Abhijay
    Bharadwaj, Aprameya
    Srinivasan, Arvind
    Murthy, K. N. Balasubramanya
    Natarajan, S.
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 519 - 527
  • [23] Unconstrained Face Recognition Using Infrared Images
    Butt, Asif Raza
    Ur Rahman, Zahid
    Ul Haq, Anwar
    Ahmed, Bilal
    Manzoor, Sajjad
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2024,
  • [24] A Progressive Learning Framework for Unconstrained Face Recognition
    Chai, Zhenhua
    Li, Shengxi
    Meng, Huanhuan
    Lai, Shenqi
    Wei, Xiaoming
    Zhang, Jianwei
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2703 - 2710
  • [25] An improved face recognition with T2FSN based noise reduction in unconstrained environment
    Bhavani S.A.
    Karthikeyan C.
    Multimedia Tools and Applications, 2024, 83 (18) : 53347 - 53381
  • [26] Face Recognition Using LBPH and CNN
    Shukla R.K.
    Tiwari A.K.
    Mishra A.R.
    Recent Advances in Computer Science and Communications, 2024, 17 (05) : 48 - 58
  • [27] Unconstrained Face Detection and Open-Set Face Recognition Challenge
    Guenther, M.
    Hu, P.
    Herrmann, C.
    Chan, C. H.
    Jiang, M.
    Yang, S.
    Dhamija, A. R.
    Ramanan, D.
    Beyerer, J.
    Kittler, J.
    Al Jazaery, M.
    Nouyed, M. I.
    Guo, G.
    Stankiewicz, C.
    Boult, T. E.
    2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2017, : 697 - 706
  • [28] Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data
    Shi, Yichun
    Jain, Anil K.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2789 - 2798
  • [29] Face Recognition in Unconstrained Videos with Matched Background Similarity
    Wolf, Lior
    Hassner, Tal
    Maoz, Itay
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 529 - 534
  • [30] A Dynamic Unconstrained Feature Matching Algorithm for Face Recognition
    Patil, Ganesh G.
    Banyal, Rohitash K.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (02) : 103 - 108