Modeling human mobility responses to the large-scale spreading of infectious diseases

被引:0
|
作者
Sandro Meloni
Nicola Perra
Alex Arenas
Sergio Gómez
Yamir Moreno
Alessandro Vespignani
机构
[1] University of Rome ”Roma Tre”,Department of Informatics and Automation
[2] Institute for Biocomputation and Physics of Complex Systems (BIFI),Center for Complex Networks and Systems Research, School of Informatics and Computing & Pervasive Technology Institute
[3] University of Zaragoza,Department d'Enginyeria Informàtica i Matemàtiques
[4] Indiana University,Department of Theoretical Physics
[5] Linkalab,undefined
[6] Center for the Study of Complex Networks,undefined
[7] Universitat Rovira i Virgili,undefined
[8] University of Zaragoza,undefined
[9] Computational Epidemiology Laboratory,undefined
[10] Institute for Scientific Interchange,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Current modeling of infectious diseases allows for the study of realistic scenarios that include population heterogeneity, social structures and mobility processes down to the individual level. The advances in the realism of epidemic description call for the explicit modeling of individual behavioral responses to the presence of disease within modeling frameworks. Here we formulate and analyze a metapopulation model that incorporates several scenarios of self-initiated behavioral changes into the mobility patterns of individuals. We find that prevalence-based travel limitations do not alter the epidemic invasion threshold. Strikingly, we observe in both synthetic and data-driven numerical simulations that when travelers decide to avoid locations with high levels of prevalence, this self-initiated behavioral change may enhance disease spreading. Our results point out that the real-time availability of information on the disease and the ensuing behavioral changes in the population may produce a negative impact on disease containment and mitigation.
引用
收藏
相关论文
共 50 条
  • [41] Large-scale seabed dynamics in offshore morphology: Modeling human intervention
    Roos, PC
    Hulscher, SJMH
    REVIEWS OF GEOPHYSICS, 2003, 41 (02)
  • [42] LARGE-SCALE URBAN MODELING - CLOSURE
    HELWEG, OJ
    JOURNAL OF THE URBAN PLANNING & DEVELOPMENT DIVISION-ASCE, 1981, 107 (01): : 53 - 53
  • [43] Modeling of Large-Scale Point Model
    Guo Ming
    Wang Yanmin
    Zhao Youshan
    Zhou Junzhao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 448 - +
  • [44] Approaches to large-scale urban modeling
    Hu, JH
    You, SY
    Neumann, U
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2003, 23 (06) : 62 - 69
  • [45] Parallel genesis for large-scale modeling
    Goddard, NH
    Hood, G
    COMPUTATIONAL NEUROSCIENCE: TRENDS IN RESEARCH, 1997, 1997, : 911 - 917
  • [46] SIMULATION MODELING OF LARGE-SCALE SYSTEMS
    FOSTER, JW
    HOGG, GL
    GONZALEZVEGA, O
    PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 1986, (SYM): : 419 - 426
  • [47] Modeling large-scale dispersal distances
    Paradis, E
    Baillie, SR
    Sutherland, WJ
    ECOLOGICAL MODELLING, 2002, 151 (2-3) : 279 - 292
  • [48] ACTIVE MODELING OF LARGE-SCALE TURBULENCE
    BIENKIEWICZ, B
    CERMAK, JE
    PETERKA, JA
    SCANLAN, RH
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1983, 13 (1-3) : 465 - 475
  • [49] Large-scale modeling of cardiac electrophysiology
    Pormann, JB
    Board, JA
    Rose, DJ
    Henriquez, CS
    COMPUTERS IN CARDIOLOGY 2002, VOL 29, 2002, 29 : 259 - 262
  • [50] MLFMA for Large-Scale Nanoplasmonics Modeling
    Solis, D. M.
    Taboada, J. M.
    Obelleiro, F.
    Liz-Marzan, Luis M.
    Garcia de Abajo, F. Javier
    2015 9TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2015,