Toroidal zero-divisor graphs of decomposable commutative rings without identity

被引:0
|
作者
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
关键词
Commutative rings; Nilpotent rings; Decomposable rings; Zero-divisor graph; Genus; 05C10; 05C25; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring without identity. The zero-divisor graph of R,  denoted by Γ(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条