共 50 条
Toroidal zero-divisor graphs of decomposable commutative rings without identity
被引:0
|作者:
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构:
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
来源:
关键词:
Commutative rings;
Nilpotent rings;
Decomposable rings;
Zero-divisor graph;
Genus;
05C10;
05C25;
13M05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let R be a commutative ring without identity. The zero-divisor graph of R, denoted by Γ(R),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文