Toroidal zero-divisor graphs of decomposable commutative rings without identity

被引:0
|
作者
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
关键词
Commutative rings; Nilpotent rings; Decomposable rings; Zero-divisor graph; Genus; 05C10; 05C25; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring without identity. The zero-divisor graph of R,  denoted by Γ(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条
  • [1] Toroidal zero-divisor graphs of decomposable commutative rings without identity
    Kalaimurugan, G.
    Vignesh, P.
    Chelvam, T. Tamizh
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 807 - 829
  • [2] On zero-divisor graphs of commutative rings without identity
    Kalaimurugan, G.
    Vignesh, P.
    Chelvam, T. Tamizh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (12)
  • [3] COMMUTATIVE RINGS WITH TOROIDAL ZERO-DIVISOR GRAPHS
    Chiang-Hsieh, Hung-Jen
    Smith, Neal O.
    Wang, Hsin-Ju
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 1 - 31
  • [4] PLANAR INDEX AND OUTERPLANAR INDEX OF ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS WITHOUT IDENTITY
    Kalaimurugan, G.
    Vignesh, P.
    Afkhami, M.
    Barati, Z.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 33 : 18 - 33
  • [5] Planar, Outerplanar, and Toroidal Graphs of the Generalized Zero-Divisor Graph of Commutative Rings
    Alanazi, Abdulaziz M.
    Nazim, Mohd
    Rehman, Nadeem Ur
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] ON THE LINE GRAPHS ASSOCIATED TO THE ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS
    Chiang-Hsieh, Hung-Jen
    Lee, Pei-Feng
    Wang, Hsin-Ju
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 61 - 72
  • [7] Zero-divisor graphs of direct products of commutative rings
    Axtell, M.
    Stickles, J.
    Warfel, J.
    HOUSTON JOURNAL OF MATHEMATICS, 2006, 32 (04): : 985 - 994
  • [8] Zero-divisor graphs of non-commutative rings
    Akbari, S
    Mohammadian, A
    JOURNAL OF ALGEBRA, 2006, 296 (02) : 462 - 479
  • [9] Eigenvalues of zero-divisor graphs of finite commutative rings
    Katja Mönius
    Journal of Algebraic Combinatorics, 2021, 54 : 787 - 802
  • [10] Signed Zero-Divisor Graphs Over Commutative Rings
    Lu, Lu
    Feng, Lihua
    Liu, Weijun
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 12 (3) : 463 - 477