Multi-objective Optimization of Solar Irradiance and Variance at Pertinent Inclination Angles

被引:4
|
作者
Jain D. [1 ]
Lalwani M. [2 ]
机构
[1] Department of Renewable Energy, Rajasthan Technical University, Kota
[2] Department of Electrical Engineering, Rajasthan Technical University, Kota
关键词
ANFIS; GAMS software; Genetic algorithm; Renewable energy; Solar energy; Solar radiation; Tilt angle and orientation angle;
D O I
10.1007/s40032-018-0464-4
中图分类号
学科分类号
摘要
The performance of photovoltaic panel gets highly affected bychange in atmospheric conditions and angle of inclination. This article evaluates the optimum tilt angle and orientation angle (surface azimuth angle) for solar photovoltaic array in order to get maximum solar irradiance and to reduce variance of radiation at different sets or subsets of time periods. Non-linear regression and adaptive neural fuzzy interference system (ANFIS) methods are used for predicting the solar radiation. The results of ANFIS are more accurate in comparison to non-linear regression. These results are further used for evaluating the correlation and applied for estimating the optimum combination of tilt angle and orientation angle with the help of general algebraic modelling system and multi-objective genetic algorithm. The hourly average solar irradiation is calculated at different combinations of tilt angle and orientation angle with the help of horizontal surface radiation data of Jodhpur (Rajasthan, India). The hourly average solar irradiance is calculated for three cases: zero variance, with actual variance and with double variance at different time scenarios. It is concluded that monthly collected solar radiation produces better result as compared to bimonthly, seasonally, half-yearly and yearly collected solar radiation. The profit obtained for monthly varying angle has 4.6% more with zero variance and 3.8% more with actual variance, than the annually fixed angle. © 2018, The Institution of Engineers (India).
引用
收藏
页码:811 / 831
页数:20
相关论文
共 50 条
  • [21] Multi-objective variance control of structural vibration
    宁响亮
    谭平
    刘红军
    周福霖
    Journal of Harbin Institute of Technology(New series), 2011, (03) : 139 - 143
  • [22] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [23] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [24] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [25] Multi-Objective A* Algorithm for the Multimodal Multi-Objective Path Planning Optimization
    Jin, Bo
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1704 - 1711
  • [26] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [27] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [28] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [29] Splitting for Multi-objective Optimization
    Qibin Duan
    Dirk P. Kroese
    Methodology and Computing in Applied Probability, 2018, 20 : 517 - 533
  • [30] Multi-objective Whale Optimization
    Kumawat, Ishwar Ram
    Nanda, Satyasai Jagannath
    Maddila, Ravi Kumar
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2747 - 2752