On the renormalization group fixed point of the two-dimensional Ising model at criticality

被引:0
|
作者
Alexander Stottmeister
Tobias J. Osborne
机构
[1] Institut für Theoretische Physik,
[2] Leibniz Universität Hannover,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the renormalization group fixed point of the two-dimensional Ising model at criticality. In contrast with expectations from tensor network renormalization (TNR), we show that a simple, explicit analytic description of this fixed point using operator-algebraic renormalization (OAR) is possible. Specifically, the fixed point is characterized in terms of spin-spin correlation functions. Explicit error bounds for the approximation of continuum correlation functions are given.
引用
收藏
相关论文
共 50 条
  • [21] Application of corner transfer matrix renormalization group method to the correlation function of a two-dimensional Ising model
    He, CS
    Li, ZB
    CHINESE PHYSICS LETTERS, 2003, 20 (11) : 2004 - 2007
  • [22] Two-dimensional Ising criticality in interacting electron systems
    Otsuka, H
    Nakamura, M
    PHYSICA B-CONDENSED MATTER, 2005, 359 : 1430 - 1432
  • [23] Criticality at absolute zero from Ising model on two-dimensional dynamical triangulations
    Sato, Yuki
    Tanaka, Tomo
    PHYSICAL REVIEW D, 2018, 98 (02):
  • [24] EXACT-SOLUTIONS TO THE RENORMALIZATION-GROUP FIXED-POINT EQUATIONS FOR INTERMITTENCY IN TWO-DIMENSIONAL MAPS
    HU, B
    RUDNICK, J
    PHYSICAL REVIEW A, 1982, 26 (05): : 3035 - 3036
  • [25] THE METHOD OF A RENORMALIZATION-GROUP IN THE SCHWINGER TWO-DIMENSIONAL MODEL
    RUSEV, DG
    SITENKO, YA
    FOMIN, PI
    UKRAINSKII FIZICHESKII ZHURNAL, 1982, 27 (12): : 1790 - 1797
  • [26] Renormalization-group analysis of the two-dimensional Hubbard model
    Halboth, CJ
    Metzner, W
    PHYSICAL REVIEW B, 2000, 61 (11): : 7364 - 7377
  • [27] Phase transition of two-dimensional Ising model on random point patterns
    Fu, XJ
    Szeto, KY
    Cheung, WK
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [28] Renormalization group flow of the two-dimensional O(N) spin model
    Ito, KR
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 58 (01) : 29 - 40
  • [29] Density matrix renormalization group approach to a two-dimensional bosonic model
    Sugihara, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 140 : 791 - 793
  • [30] Quantitative functional renormalization group description of the two-dimensional Hubbard model
    Hille, Cornelia
    Kugler, Fabian B.
    Eckhardt, Christian J.
    He, Yuan-Yao
    Kauch, Anna
    Honerkamp, Carsten
    Toschi, Alessandro
    Andergassen, Sabine
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):